UEsDBBQACAgIAPy8uE4AAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmltz2ygUgJ+3v4LhafchtpAt28lE6aSd2dnMpGlmk+nsK5awzAaDVqBYzq8vAlmX2k59S+1kk4egg7jpO4fDAXz+MZsw8EgSSQX3IWo5EBAeiJDyyIepGp0M4MeLD+cREREZJhiMRDLByodeXrKsp6WW1znN83Ac+zBgWEoaQBAzrPIqPpxCADJJz7i4wRMiYxyQu2BMJvhaBFiZVsZKxWft9nQ6bc37a4kkakeRamUyhECPlUsfFg9nurlGpWnHFHcdB7X/+XJtmz+hXCrMAwKB/o6QjHDKlNSPhJEJ4QqoWUx8GAvKFQQMDwnz4W0ugd9HCSF/QFBU0ngcePHht3M5FlMghv+SQOepJCVlPSO08zL69WfBRAISH/b7EEQ2GfrQ9TxNicVj7EPHFmZ4RhLwiFmZg1MlAlPf5I4wk2ReVvf0RYTEvukW5TmdGIpAKqIVgCCQMSGhebJfiIw2ZkaxtfYCIZJQgsyHN/gGglmRPtnUFDFs7uhT0aVXz1UzRmojP28XWNcDHJKY8FAXalBGW1HuDQzlPBna5DVD7r405N475FWQ0eaUv/I6W3crtsj1DFyTvjuKGt0r/jeJ9JjrjDvvjPfKuGnB3a3oOoat80rJmiKWocz/6zBGTGJGsj2CZ5RXEK+NUEJ3t4su6tCdgyB3tkae47Dw1JgGD5xImZOt2s0f/qKhXr1Mf0KHjVTpllB/YFsg//GGyqjWGNVlnlfDKOWBMg6lQPs5TR7ruuh0nUNoo2pz38rYlfRqlpJEuVRyuZvLlWFvF9D9vw1bpIrlPV9xpXdZxJirXPi0B0Lie93UV36fYC7zrVbTklbrLcGz53Tmvevs+HQ291s333BSaiLVwf1Ijz2sq2+78GjlAt5yvUPrcANvvpTI7iHNURn0hta6H7PqbecVXKe7HGOrf8Rm9ag/T1Q8vhViFSO8x2ubu8glQTZOFJEU859tWdgsqs3x27lc6qNv9bH7GDfeVHodo1MPLdg3cuwf6p46CPWQe2g1Pw+4sT25LTMqxOhAiI900qymGQien3/PtxdWKjl235jr2MM+jkaEW48rAcgcU2zmmMpPTnEzkSEjz5B5+4RstqmvB57QDFzaGpe24KVrk45NujbxSkDbbR6NamPttWrh8w9LQ3e7Hc9rciRvUum/IITn6YQkNddwM5dL4/Gsc9DtpaSh2jVcwSo7WW0VktFQm9CEaiWdaO1NcGa0iIdSsFSRuyAhhFeXdNaMpzRU4zyw032PaJabi20TjEVCnwRXJQ2Qz4JLZq7zGiccy8zHfS6AbRjrbu4Z84hVs/HSSpUG7AG+KfTj2d4yxdQZOgXCXssddNDA6zh91D/1Br01kaJBhdS+WJtow90U6lhjPUHO2ma0u7vZyGm4y5wGToLqFLbj7NkwFvaSf5YZ1S7oGI8GjcksFH2xUz8mglRWJ9lWKgkN3lh8g9OMMoqT2WJPL0ZYkayKMO6NUPshwhECXv0pGntUDe3KSrX7fvsxI6opcjzRFWwnlH/CwUOUiJSHi+vWXj4dHdq2VkMbCsEIrhzRp7lcu2deiBRWAVp/NXix2ReMSfAwFFljcXvex1BZzYBrI9Tuf5fMgF3WvJODm8I2Z3rrXkueLJwAtms/hWrPf2518R1QSwcIKhTeitEEAAAQJgAAUEsDBBQACAgIAPy8uE4AAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztmM1u2zgQx8/tUxC81yZlSYmCKIXRHnaBtkiRy14ZamxzK5EqScdWXm3fYZ+pI1Jx5G5cNEYaoO364OHXDMnfnxqLPn+9bWpyA9Ypo0vKJ4wS0NJUSi9LuvaLV6f09cXL8yWYJVxbQRbGNsKXNOtH7vywNslmRd8m2rakshbOKUlJWwvfu5R0QwnZOnWmzQfRgGuFhCu5gka8M1L4EGXlfXs2nW42m8ndfBNjl9Pl0k+2rqIE16pdSYfCGYbbc9rMwvCEMT796/27GP6V0s4LLYES3EcFC7GuvcMi1NCA9sR3LeCKjVZyhnPU4hrqkv6pPW4OZL8yItf2Bv0H55LOeMboxcsX525lNsRc/43jSurtGnb+oTLtx2D3G1MbS2xJE04JcuUM7TXaIkFgdbsSJWUTzuKHpwXjPOdJ9K9FB5bcCAzKYotYeyNDyNC6ELWDu7E4+XtTQexJh/FaNQExcR5QHZzctQBVKMXtsyBVF1Qfx1MarnxXA/ErJT9pcIg/Gzn1hT9UVUF/eKIPqCXoGyRirEPJWZilY2H4LRvO2JaHesdD7y2PzcEfl2rVlsyjxzwOnCfRzKJJo8l2SOCzjut0/XdJW2HxlGEg2fefTwex/yO72Co3Un3eV9/uKc1mRynNgtAsyMzuRf5JJT1MlwxlwD3/+8+3YYfHSArrwSmhR9jf9B1fc89/d+6HQWJ8DSN+l6G+xw+T4FH8iiIATHgREAa7y1DZU2GUxtjKkW1MAjE1hO/NLuRC9L9BwywHc+NDUNmRUE3draCyRt9zHTXdo50NaI95kh4rB89mQY+Mf32iJ+mAJCtylubpk2lz7BF/FNm5lSvVQAViHy0K+1xoEx5/jNOTgLY3vwbbyw4zsqr2uT7fkQ0pAxdfRK7JL3NmL61yzT5V/oxU85iYI9Ui/ympavC7fX7oy+Osmv2fVR/D8vNaVOENbNjqx7v6mCk/8ppyODXmadF/TnKenfI04U8F6EdcNR68aPSN8TbRRXOb7AI+9u5B5nk0J9GcRlMcvJeopq2VVP7b0rq1XeD9+KFX5aFrX+X0OJXR78GX5cnJ9x77+8DP8rrMv/fNbjq650/v/ku4+AJQSwcIXGemUjwDAADtEAAAUEsDBBQACAgIAPy8uE4AAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAPy8uE4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVh7j9s2Ev87/RQDoQfcAbtrkiL1COwUTq7BHZAWQfeuKIqiAC1xbd7Kkk6i13bafvfOkJIfu0mbzQZFrFAcDocz85sHtdOvdusK7kzX26aeRfyKRWDqoiltvZxFG3dzmUVfvfhiujTN0iw6DTdNt9ZuFiniPOzD2ZWKc6Lptp1FRaX73hYRtJV2tGUWbSOw5Sx6naVKJl+Ly3nG5aWMX//zMp+/en3Jc/UykV/n+ctX8whg19vndfOtXpu+1YW5LlZmrd80hXb+vJVz7fPJZLvdXo2aXTXdcrJcLq52fRkBWlX3s2h4eY7izjZtY88uGOOTH755E8Rf2rp3ui5MBGTxxr744tl0a+uy2cLWlm41i/I8i2Bl7HJFLpBpBBNiatEPrSmcvTM9bj2Zepvduo08m65p/Vl4g+pgTgSlvbOl6WYRu4pVnLJUcpmJPFF5LCNoOmtqNzDz4dDJKG56Z802yKU3f6TiIgLXNNVCk1D4FTgohg/wHC4gSZEigCuQSMmQkkJMNMUlxEAsPAYpcZRE5gmu0DL+rxQDznEFBAMhQHAQMU6VAoVsKe0VyJvkXh7Dh7hRI3xiosUxPp4WS3wEvaEgFcSgHipO/JsibpSvBFngiXEGMseDiKBSDjHqgPOUAUqMSTz3dkgG9OMgSbxIQWSA8tB0kszQO3e2t4vKzKIbXfWIua1vOoy3w7x3+8p49w2EI178Av8hh32H7Iph1IcwwRXGLuhJ8JG0MDnHRZ6jgiAwtO2CBh4GEagsTFkcBhEGGQYVeGTYKQNrMJTJwCPjp1o42hc/xr7sxD5ORiAepL0fYiC9udefBjlMkzD1gcY4G6hZoOY0TZ5oTPxJxkiWp4852HWbDzlRpfLhuSk+mE0PzuUnhwaZjzF2PNLXqo819VH5cN/Oo3dV/PFH8ieC+l5IFXqUfv55cGT8JDM/5cTkLOE/j8Ey++jjucj+8jNT9t4aF0Y+jJ8HiPzjgXhqPTw4Qv3xkdPJ2I2ngxOgXxHvkMjOrHtySxpDIg5tOaGuOfTmVECqIE1OOvQF9ehEHds0NensrE2r7LxXJ0RMfePH1khtNjRtIce+fTF07l8fdG5stPLYa1FBEsUB8G4ACZXloemiFuLQdoWizisSwNasBCRU+j/QgfFa2PT24NiVqdqDy70Pbd1u3JnfinU5vroGuXXlL30Df9kUty8Pnh4kGd27U7F4YTrey8IF6uza9mxa6YWp8OJ7TXEAcKcryll/wk1TOxhCAHPKi/M3xKnZFJUtra6/R9zH29i3m/XCdOBfGzLSC6Ht8N6rpMxFYCmapiuv9z2GCex+NB1uFrG6kjFPFf5EHicc9+2HJZFfJTxPeMJjxvM8xXbVF5pCPMPLuMxTrniWxUIyrEP79y/JQTtzd22cQ/N70DvTj+5edpQ+gxtp8u/+ZVMdSW1ja/dKt27T+W8GzLOOjJrXy8p4T3qQ8YZd3C6a3XVwYRJk/WffUj0NCiyWr5qq6QDzTyiFDMO4CKPnIc0OXMzzMM8x4ERCD+scvUocflyE0XMhyEG1wVLORzvZeIztIczPwtBHCN3XN7V1b8aJs8Xt0VLiD/iPPjwXyT+TyOnkXuhNh6QYA3HdlCYEcRz4z9ant6arTRWCrkbcN82mD+wBWa/1pjdvtVvN6/I7s8SEfaupYjpUJLAe7StNYde4MdAHR2sKgv+iYYFammVnRn8EZQIMg5bQt53RZb8yxh2wCClxZGPBmFH9qdNY032dX1ssKJeI9Vrv/JUG06gdsm/aF51tKbxhgWX91hwjuLQ9iShPDCeX9GhbQUUKwXAEBH7bbtyq6fz3mnZEofzfoc49fQaPUN5g7dnhuXuYwe7nv4t/IJw+zlEofhOTeFOZNX7RndGP232tQMihWfwPy9O9SDlBB9c/kAygq3alDz6s9J7K0UlB88K+OY8QLHN2Z8r7yB6zxa0wLPGjE6NQjUax8PIvW5Ym1PMGv9it2+N7mg2lxS5NfYemNBg3sGN+15557nds+LPDjiN4SNhzv/yOB7oXsNauszuYs8AyDyxzEYY4DDIMij6ih3Jh/l8HzfuQSxjO3RBVWLEIM2/rlz9VuluaX/5W//blkFoBIB8J67WuS6j9TeEtVbvo2KM0I8ACGBs3UuZByLD1Ad6+ZB7wnP8J3kcgTuHmIlRIPw4V8hNB1zUmrnfGmC+Yh8aEUhU05v4vOXtf4E/iz6dmDzvPsA9wHrqdt5LKfThMnVLvZfMj4JicZqbvwsPff178DlBLBwjgcLMbowYAAMsSAABQSwECFAAUAAgICAD8vLhOKhTeitEEAAAQJgAAFwAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWxQSwECFAAUAAgICAD8vLhOXGemUjwDAADtEAAAFwAAAAAAAAAAAAAAAAAWBQAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWxQSwECFAAUAAgICAD8vLhO1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAACXCAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAPy8uE7gcLMbowYAAMsSAAAMAAAAAAAAAAAAAAAAAPQIAABnZW9nZWJyYS54bWxQSwUGAAAAAAQABAAIAQAA0Q8AAAAA

Reveal.js 实用离线模板


 

Zhou Bingzhen

 

欢迎b站留言反馈

点我查看教程下载离线版

GeoGebra动态图形


动点$A$在抛物线$y=x^2$上,已知$A$点的横坐标取值范围为$(-1, 2]$,求$A$的纵坐标的取值范围

利用iframe嵌入幻灯片中

打印成pdf以及背景色


 

方法1:在浏览器输入框内容中index.html后面写入 ?print-pdf再按快捷键 Ctrl + P可以打印成pdf

 

方法2:直接点我再按快捷键 Ctrl + P可以打印成pdf

 

该模板不会打印书签信息,建议用谷歌浏览器

鼠标悬浮效果


 

鼠标悬浮在下面的变色文字上有惊喜

把鼠标移动到我这里可以看到彩虹

酾酒 临江 赋诗

数学公式模板


Consider energy Functional \begin{equation}\label{eq1} E[\phi(\boldsymbol{x})]=\int_{\Omega}\left[\frac{\lambda}{2}|\nabla \phi|^{2}+H(\phi)\right] d \boldsymbol{x} .\end{equation} The $H^{-1}$ gradient (Cahn-Hilliard) of \eqref{eq1} as: \[ \begin{array}{l}{\frac{\partial \phi}{\partial t}=m\Delta \mu} \\ {\mu=\delta E / \delta \phi=-\lambda\Delta \phi+h(\phi)}.\end{array} \] subject to either periodic boundary conditions or $$ \left.\frac{\partial \phi}{\partial \boldsymbol{n}}\right|_{\partial \Omega}=\left.\frac{\partial \mu}{\partial \boldsymbol{n}}\right|_{\partial \Omega}=0 .$$ Where $h = H'$ and $H(\phi)=\frac{\lambda}{4 \eta^{2}}\left(\phi^{2}-1\right)^{2}$. Satisfied: $$ \frac{\mathrm d}{\mathrm d t} E[\phi(\boldsymbol{x})]=-m\|\nabla \mu\|^{2}. $$

视频



 

本次get到

  1. 基于reveal.js网页幻灯片的基本操作
  2. 网页幻灯片的实用离线模板
  3. 想了解更多请找相关官网查看更多信息
  4. 本文作者的网站官网为 https://kz16.top

 

Author xxxx

Email xxx@xxx