GeoGebra动态图形
动点$A$在抛物线$y=x^2$上,已知$A$点的横坐标取值范围为$(-1, 2]$,求$A$的纵坐标的取值范围
数学公式模板
Consider energy Functional
\begin{equation}\label{eq1}
E[\phi(\boldsymbol{x})]=\int_{\Omega}\left[\frac{\lambda}{2}|\nabla \phi|^{2}+H(\phi)\right] d \boldsymbol{x}
.\end{equation}
The $H^{-1}$ gradient (Cahn-Hilliard) of \eqref{eq1} as:
\[
\begin{array}{l}{\frac{\partial \phi}{\partial t}=m\Delta \mu} \\
{\mu=\delta E / \delta \phi=-\lambda\Delta \phi+h(\phi)}.\end{array}
\]
subject to
either periodic boundary conditions or
$$
\left.\frac{\partial \phi}{\partial \boldsymbol{n}}\right|_{\partial \Omega}=\left.\frac{\partial \mu}{\partial \boldsymbol{n}}\right|_{\partial \Omega}=0
.$$
Where $h = H'$ and $H(\phi)=\frac{\lambda}{4 \eta^{2}}\left(\phi^{2}-1\right)^{2}$. Satisfied:
$$
\frac{\mathrm d}{\mathrm d t} E[\phi(\boldsymbol{x})]=-m\|\nabla \mu\|^{2}.
$$
本次get到
-
基于reveal.js网页幻灯片的基本操作
-
网页幻灯片的实用离线模板
-
想了解更多请找相关官网查看更多信息
-
本文作者的网站官网为
https://kz16.top