三点坐标求圆方程

1. 问题

求过A(x1,y1),B(x2,y2),C(x3,y3)A\left(x_1, y_1\right), B\left(x_2, y_2\right), C\left(x_3, y_3\right)三点的圆方程MM.

2. 求解

2.1. 解方程法

设圆心M(x0,y0)M(x_0,y_0), 设线段ABAB的中点为PP, 设线段ACAC的中点为QQ, 则根据垂径定理, 有

可得方程组

(x0xP)(x2x1)+(y0yP)(y2y1)=0\red{① \quad (x_0-x_P)(x_2-x_1)+(y_0-y_P)(y_2-y_1)=0}

(x0xQ)(x3x1)+(y0yQ)(y3y1)=0②\quad (x_0-x_Q)(x_3-x_1)+(y_0-y_Q)(y_3-y_1)=0

式可变形为

(x0xP)(x3x1)+(y0yP)(y3y1)=t\red{③\quad (x_0-x_P)(x_3-x_1)+(y_0-y_P)(y_3-y_1)=t}

其中, t=(xQxP)(x3x1)+(yQyP)(y3yp)t=(x_Q-x_P)(x_3-x_1)+(y_Q-y_P)(y_3-y_p). 接下来就是加减消元.

(y2y1)×(y3y1)×(y_2-y_1)\times③-(y_3-y_1)\times①

x0xP=t(y2y1)(x3x1)(y2y1)(x2x1)(y3y1)x_0-x_P=\dfrac{t(y_2-y_1)}{(x_3-x_1)(y_2-y_1)-(x_2-x_1)(y_3-y_1)}.

(x2x1)×(x3x1)×(x_2-x_1)\times③-(x_3-x_1)\times①

y0yP=t(x2x1)(y3y1)(x2x1)(y2y1)(x3x1)y_0-y_P=\dfrac{t(x_2-x_1)}{(y_3-y_1)(x_2-x_1)-(y_2-y_1)(x_3-x_1)}.

解出圆心x0,y0x_0,y_0后, 半径r=MAr=|\overrightarrow{MA}|.

如果用中垂线交点列方程那就慢了!

这里解方程组是有技巧的, 那就是先变形再消元, 这种技巧非常实用!

2.2. 待定系数法(推荐)

BCBC为直径的圆方程:

F1(x,y):=(xx2)(xx3)+(yy2)(yy3)=0F_1(x, y):=\left(x-x_2\right)\left(x-x_3\right)+\left(y-y_2\right)\left(y-y_3\right)=0

P(x,y)P(x,y)BCBC为直径的圆上, 则PBPC=0\overrightarrow{PB}\cdot\overrightarrow{PC}=0, 整理就是上式.

直线BCBC方程:

F2(x,y):=(xx2)(y3y2)(yy2)(x3x2)=0F_2(x, y):=\left(x-x_2\right)\left(y_3-y_2\right)-\left(y-y_2\right)\left(x_3-x_2\right)=0

Q(x,y)Q(x,y)在直线BCBC上, 取BC\overrightarrow{BC}的一个法向量(即与BC\overrightarrow{BC}垂直的向量)
n=((y3y2),  (x3x2))\bm n=\Big((y_3-y_2),\; - \left(x_3-x_2\right)\Big),
则根据关系式QBn=0\overrightarrow{QB}\cdot \bm{n}=0, 整理可得上式

B,CB, C两点的圆可以表示为

F1(x,y)+λF2(x,y)=0F_1(x, y)+\lambda F_2(x, y)=0

只需验证两条(它就是所谓的圆系方程):
(1)B,CB,C两点坐标满足上面等式成立;
(2)上式可整理成圆的标准式
第一条容易验证, 第二条略微麻烦. 这里给出第二条验证的思路, 不妨假设BCBC的中点为坐标原点(否则做平移处理), 则从形式上看, 有
F1(x,y)=x2+y2r2F_1(x,y)=x^2+y^2-r^2
F2(x,y)=2ax+2byF_2(x,y)=2ax+2by
F1(x,y)+λF2(x,y)=(x+λa)2+(y+λb)2r2λ2(a2+b2)=0F_1(x, y)+\lambda F_2(x, y)=(x+\lambda a)^2+(y+\lambda b)^2-r^2-\lambda^2(a^2+b^2)=0 为圆方程

AA点坐标代入上式, 可解出,

λ=F1(x1,y1)F2(x1,y1)\lambda=-\dfrac{F_1(x_1,y_1)}{F_2(x_1,y_1)},

因此过A,B,CA,B,C三点的圆方程为:

F1(x,y)F1(x1,y1)F2(x1,y1)F2(x,y)=0F_1(x, y)-\dfrac{F_1(x_1,y_1)}{F_2(x_1,y_1)} F_2(x, y)=0

2.3. 四点共圆复数法

熟知结论:

P(x,y)P(x,y)在圆上, 设复数

z1=(x2x1)+(y2y1)i(x3x1)+(y3y1)iz_1=\dfrac{(x_2-x_1)+ (y_2-y_1)\mathrm{i}}{(x_3-x_1)+ (y_3-y_1)\mathrm{i}}, z2=(x2x)+(y2y)i(x3x)+(y3y)iz_2=\dfrac{(x_2-x)+ (y_2-y)\mathrm{i}}{(x_3-x)+ (y_3-y)\mathrm{i}},

则根据复数乘法几何意义, z1z_1的辐角对应于角BAC\angle BAC, z2z_2的辐角对应于角BPC\angle BPC. 由于P,A,B,CP,A,B,C四点共圆, 因此复数z1z_1z2z_2的辐角相等或互补, 于是, 根据第三条结论可得圆MM方程.

这里给出相关表达式

  • k1=1/[(x3x1)2+(y3y1)2]k_1=1/[(x_3-x_1)^2+(y_3-y_1)^2]
  • k2=1/[(x3x)2+(y3y)2]k_2=1/[(x_3-x)^2+(y_3-y)^2]

它们和待定系数法里的公式对应关系为:

2.4. 三元一次方程组

假设圆方程为: x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0

于是有

{x12+y12+2gx1+2fy1+c=0x22+y22+2gx2+2fy2+c=0x32+y32+2gx3+2fy3+c=0\begin{cases} x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0\\ x_2^2 + y_2^2 + 2gx_2 + 2fy_2 + c = 0\\ x_3^2 + y_3^2 + 2gx_3 + 2fy_3 + c = 0 \end{cases}

最后解出参数g,f,cg,f,c

2.5. 复数推导(推荐)

设圆心为 (x0,x0)(x_0,x_0), 构造复数

c  =(x0x3)+i(y0y3)c\;\,=(x_0-x_3)+i(y_0-y_3)
z1=(x1x3)+i(y1y3)z_1=(x_1-x_3)+i(y_1-y_3)
z2=(x2x3)+i(y2y3)z_2=(x_2-x_3)+i(y_2-y_3)

r2=ccˉ=(cz1)cz1=(zz2)cz2r^2=c\bar{c}=(c-z_1)\overline{c-{z}_1}=(z-z_2)\overline{c-{z}_2}

根据中间两项

ccˉ=ccˉ+z1zˉ1czˉ1z1cˉc\bar{c}=c\bar{c}+z_1\bar{z}_1-c\bar{z}_1-z_1\bar{c}

czˉ1+cˉz1=z1zˉ1c\bar{z}_1+\bar{c}z_1=z_1\bar{z}_1

同理

czˉ2+cˉz2=z2zˉ2c\bar{z}_2+\bar{c}z_2=z_2\bar{z}_2

解得

c=z2z1zˉ1z1z2zˉ2z2zˉ1z1zˉ2c=\dfrac{z_2z_1\bar{z}_1- z_1z_2\bar{z}_2}{z_2\bar{z}_1-z_1\bar{z}_2}

最后回代得

这种方法结论很简洁, 可直接得到圆心坐标

3. 总结


4. 返回主页

点我返回主页, 查看更多精彩