定角定弦轨迹问题

问题1

如果MON=60\angle MON=60^\circ,点ABA、B为射线OMONOM、ON上的动点(ABA、B不与点OO重合),且AB=43AB=4\sqrt{3},在MON\angle MON内部,AOB\triangle AOB的外部有一点PP,且AP=BPAPB=120AP=BP,\angle APB=120^\circ,求证明点PPMON\angle MON的平分线上

UEsDBBQACAgIAOldYVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmltz4yYUgJ+7v4LhqX2ILWTL9mai7GR3ptPMZLOZJrPTVyxhmQaBKlAs+9cvAlmS13bqW2onTR6CDuKm7xwOB/DFpzxm4ImkkgruQ9RyICA8ECHlkQ8zNTobwE+XHy4iIiIyTDEYiTTGyodeUbKqp6WW5/aKPJwkPgwYlpIGECQMq6KKDycQgFzScy5ucUxkggNyH4xJjG9EgJVpZaxUct5uTyaT1ry/lkijdhSpVi5DCPRYufRh+XCum1uoNOmY4q7joPZfX29s82eUS4V5QCDQ3xGSEc6YkvqRMBITroCaJsSHiaBcQcDwkDAf3hUS+HWUEvIbBGUljceBlx9+uZBjMQFi+DcJdJ5KM1LVM0K7KKNffxFMpCD1Yb8PQWSToQ9dz9OUWDLGPnRsYYanJAVPmFU5OFMiMPVN7ggzSeZldU9fRUjsm25ZntPYUARSEa0ABIFMCAnNk/1CZLQxNYpttBcIkYYS5D68xbcQTMt0ZlNTxLC5p7OyS6+Zq6aMNEZ+0S6xbgY4JAnhoS60QBntRLk3MJSLZGiT1wy5+9KQe++Q10FG21P+xpts3Z3YItczcE367igadK/5nyTSY24y7rwzPijjRQvu7kTXMWydV0rWFLEMZfFfhzEiThjJDwieUV5DvDFCBd3dLbpoQneOgtzZGXmBw8JTYxo8ciJlQbZut3j4g4Z69TL9CR02UqVbQv2BbYH8wxdURrXGqC7zvBpGGQ+UcSgl2i9Z+tTURafrHEMbdZuHVsa+pNezlCQqpIrL/VyuDXu3gO7/bdgiU6zo+Zorvcsixlzl0qc9EpI86Ka+8YcUc1lstRYtab3eUjx9Tmfeu85OT2dzv3X7HaeVJjId3I/02MOm+nYLj9Yu4C3XO7YOt/DmK4nsH9KclEFvaa2HMavebl7BdbqrMbb6J2xWT/rzRM3jeynWMcJ7vLa9i1wRZONUEUkx/7ctC5tGjTl+N5crffStPvYf49abSq9jdOqhJftGjv1D3Y8OQj3kHlvNzwNe2J7cVRk1YnQkxCc6adbTDAQvzr/n2wsrVRy7b8x1HGAfRyPCrceVAOSOKTZ1TOWZU95M5MjIU2TezpDNNvX1wFOagytb48oWvHJt0rFJ1yZeBWi3zaNRbaK9ViN8/mlp6O6243lNjuRNKv0/COF5FpO04Rpu53JlPJ51Drq9jCyodgNXsM5O1luFZDTUJhRTraQzrb0Y50aLeCgFyxS5D1JCeH1JZ814QkM1LgI73feI5oW52DbBWKR0JriqaIBiFlwxc523cMKxynzc5wLYBWPdzz1jHrF6Nl5ZqdaAPcA3hX4+21ulmCZDp0TYa7mDDhp4HaeP+h+9QW9DpGhQI7UvNia64G5KdWywniBnYzPa391s5TTcVU4Dp0F9CttxDmwYS3vJ36uMehd0ikeDxmSWir7YqR8TQSbrk2wrVYQGbyy+wVlOGcXpdLmnFyOsSF5HGA9GaPwQ4QQBr/8UjT2qh3ZtpcZ9v/2YEdUUOY51BdsJ5Z9x8BilIuPh8rp1kE9Hx7at9dCGQjCCa0f0eS437pmXIoV1gDZfDV5s9gVjEjwORb6wuD3vY6isZ8CNERr3vytmwD5r3tnRTWGXM71NryXPlk4A242fQrXnP7e6/AFQSwcI64/wTNEEAAAQJgAAUEsDBBQACAgIAOldYVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztmM1u2zgQx8/tUxC81yZlSYmCKIXRHnaBtkiRy14ZamxzK5EqScdWXm3fYZ+pI1Jx5G5cNEYaoO364OHXDMnfnxqLPn+9bWpyA9Ypo0vKJ4wS0NJUSi9LuvaLV6f09cXL8yWYJVxbQRbGNsKXNOtH7vywNsmSvG8TbVtSWQvnlKSkrYXvXUq6oYRsnTrT5oNowLVCwpVcQSPeGSl8iLLyvj2bTjebzeRuvomxy+ly6SdbV1GCa9WupEPhDMPtOW1mYXjCGJ/+9f5dDP9KaeeFlkAJ7qOChVjX3mERamhAe+K7FnDFRis5wzlqcQ11Sf/UHjcHsl8ZkWt7g/6Dc0lnPGP04uWLc7cyG2Ku/8ZxJfV2DTv/UJn2Y7D7jamNJbakCacEuXKG9hptkSCwul2JkrIJZ/HD04JxnvMk+teiA0tuBAZlsUWsvZEhZGhdiNrB3Vic/L2pIPakw3itmoCYOA+oDk7uWoAqlOL2WZCqC6qP4ykNV76rgfiVkp80OMSfjZz6wh+qqqA/PNEH1BL0DRIx1qHkLMzSsTD8lg1nbMtDveOh95bH5uCPS7VqS+bRYx4HzpNoZtGk0WQ7JPBZx3W6/rukrbB4yjCQ7PvPp4PY/5FdbJUbqT7vq2/3lGazo5RmQWgWZGb3Iv+kkh6mS4Yy4J7//efbsMNjJIX14JTQI+xv+o6vuee/O/fDIDG+hhG/y1Df44dJ8Ch+RREAJrwICIPdZajsqTBKY2zlyDYmgZgawvdmF3Ih+t+gYZaDufEhqOxIqKbuVlBZo++5jpru0c4GtMc8SY+Vg2ezoEfGvz7Rk3RAkhU5S/P0ybQ59og/iuzcypVqoAKxjxaFfS60CY8/xulJQNubX4PtZYcZWVX7XJ/vyIaUgYsvItfklzmzl1a5Zp8qf0aqeUzMkWqR/5RUNfjdPj/05XFWzf7Pqo9h+XktqvAGNmz14119zJQfeU05nBrztOg/JznPTnma8KcC9COuGg9eNPrGeJvoorlNdgEfe/cg8zyak2hOoykO3ktU09ZKKv9tad3aLvB+/NCr8tC1r3J6nMro9+DL8uTke4/9feBneV3m3/tmNx3d86d3/yVcfAFQSwcICiLpwzwDAADtEAAAUEsDBBQACAgIAOldYVAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKhWAAKggGNBQU5qiV5RanpmcUlqkWNKig+IkZdapKFUnFqSk1iUnuqTmJSao6RpzVXLxZUGMwxFUiM/KcsvMTcVaC4XyOCyxCKQ4Qq2CCusuaA26gF1OicWgAyBadNRUFKJiQEbV62aV6sCsgtJNdiK4JLKnFSEBmOQcwBQSwcIQrEDwpEAAADaAAAAUEsDBBQACAgIAOldYVAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vltb+O4Ef689ysI4QpsWtvhu6SFvQcnvUUP2LsNLtei6LUfZImx2ciST5ITZ3v9750hJdmOkzQvu9tDkSgUyeGQM8+8URl/s1nm5MpUtS2LScBGNCCmSMvMFvNJsG4uhlHwzduvxnNTzs2sSshFWS2TZhIopOzXQW+kuMaxZLWaBGme1LVNA7LKkwaXTILrgNhsEryLQiX1t3w4jZgcSvHuj8N4evpuyGJ1ouW3cXxyOg0I2dT2TVH+kCxNvUpSc54uzDJ5X6ZJ4/ZbNM3qzfHx9fX1qDvZqKzmx/P5bLSps4CAVEU9CdqXN8Bub9G1cOScUnb81+/fe/ZDW9RNUqQmICjx2r796tX42hZZeU2ubdYsJkFIQcKFsfMFqgA7x0i0Aj2sTNrYK1PD0p2uk7lZrgJHlhQ4/8q/kbwXJyCZvbKZqSYBHYUqIGVlTdG0s6zd5bhbP76y5tozwje3h2I8IE1Z5rMEuZBfCSOKwkNYTAZEhzDCCVNEwkgEIyEROKaYJIIgCRNESmglDjMNMzgNf5WihDGYIZwSzglnhAvoKkUUkIW4lgOtjh0/Cg9Sw4ngETgmBDxuTEh4OL4BI+XZwDmU0O5NITXwVxwlcIMiIjKGjXBAhYwIOAP0Q0qAo0D2zMkhKcFfRiSy5yHhEQF+IDpypqCdK1vbWW4mwUWS1wCyLS4qMLC+Xzc3uXHqawe2ALEB/ACF/Wha3L1dwAylA3w0PLIziB1c5D4qAAIF2QbYMN9wP0p9lwrfcN9I3yhPI/1K6Um9oFR6GileKmEnn3iKfNGOfAyFADzw9K4RBM/N3PmxkW1X+64zNMpoOxr50Ri7+oXCiGcJI2kcPmXjplrfq0QeHu4L4WMA3nSwL9vZ1PN8wp7djjqOHi/pk9zh9pa9chVXj9+SvRDTOxFVoFD8dc/BluJFYj5nR73n759GYBk9envGoy++Z0jvDHG+ZW37aYCIHw/ES8Nhrwj18Jbj4y4Zj1slkHqBtK0fN2ZZo1pCQTTvs7LGpNmm5pCTUJFQ7yToAaZorbZZGnN0tJelVbSfqjUOhi7vQ2bELOtzNpdd2h60ifvXg8QNeVZuUy0cEFkxQqA0IBqjcptz4RS8z7pcYeLlmkBmVpxojPz3JGAoA8va9opdmHzVq9zp0BardbOnt3SZda9NeYs6K9PLk17P7YxJ6maXDKqlbRXmq6e9Iu3VOE9mJocy9xytgJCrJEePdTtclEVDWgPgMnDsXD04Nus0t5lNir8A6l0p9sN6OTMVca8liuiY4HLSFY4uOHeFo4RqxJGkZVll5zc1GAnZ/M1UsJiHfKRiHTIZyphGCrLIjZ9hIhzpUEtGBdWSKgi9dZqgeXM+ioXkoYpVFAqoomDN3VOSC7+zuTo3TQPS1yTZmLrX3LxC59npfFeflPl2aFXaojlNVs26cjcE8LIKhZoW89w4TTqIoZ5OL2fl5tyrUHteP92sMJr6E8zmp2VeVgS8j6Ms87ad+dbR4NF6KupoqKNocUKm/TyLuaNw7cy3jgpA9kdrRWWsk5N229ia+P6+UTkTwfJ8XdjmfddpbHq5FRUXeAOoW4vd58k+Fc/x8S3jGye5u/l0prgsM+PNWHj6vfnxpakKk3uzKwD6dbmuPbk/mTv2ujZnSbOYFtmPZg4Oe5ZgxGzgIJ50K2BmUruEhX68VXWCZvBnEMyPZmZemU4h/jAeiPaUpF5VJsnqhTFNj4Z3ii0Z9cJ0xx83CcR0F+eXFgLKENBeJhtX0oAjrVr/G9dpZVdo4WQGYf3SbG04szWyyHYER5XUIFuKQQrAaBAIuMuum0VZuftZ0uAIRoANnLnGa28H5QeIPhvY9zUdkPqXqnktjo4AUWfszl/cDiY3S7jT7Y1vObiAAaiTcvZPiFF9DvTzW63DdG/wYejsHZvWaUiSrxZJr8k8ucGwtBPYHL8PFxe1aQiobMgwVOzPfr9vRRAM7cZkt9F3INXIgzoObBQKThWNaKh0FIUhoPGxD4VOWowFno3aHb0FNLCG6ILadWNf/z1Pqrn51++Kf3/dOoHXo8NsuUyKjBQup/+Y3ATbXJJQh0vCAJYhGxB61Opv3XTTC8+v5XKAUAX8Ov0v/gs+Ow60C9B+xHoqOJFT7FDwh8DZ4nAXArieeSAOZ2/FxmYBIagAy0Z8Wh1Q//Inm2XG5+5ylaS2QcDDqNdofgNu9l2BUcI4DzqMK5fGrDD8fyh+qpKixk9CByb1qXG/G3b7eNjtl4P96cB6XIf/v8CeuRC5D+25mSPtzx8G5PVQjAQ0riV/IOyI/L4Pv0f/OMB9+jDu+wF5+qyA3NUxz/X4oYw9tOFDlpEUkHedQrt0B2nUGF9qeGGY+/B64yq0Hay2NjXkIympjKAgVIJxHrfBBoZjGccilpJTIbT40lH81FZpbm6hPm0dWu4gfIBv9jC+kODxe3SLX/Y8z34ewAcI3umbvAdP3e+cqoUCLhKmuIJzl1CYkQ11VDfUnekjbb/jb5jPzswHC+aH3XowoMpuyNQvnHqKKcd0o0YRi6nQjIac6zCC2n0qHKOphFMe2s1UueFbduOP+Uvh5ax9aYv3L3sBOLzERPp4dMtKMm8lFhre2+yOgZw8JQCcPCsA6MiZBzYz37w0+ItRrGUURnDdCzXqXHtHVSMGFz0WS0EjQAmvfPc6qvwcjnofChsyIdQj8R7M/MTWzkp/ng7IyWFQPnsKJme/EUxoW1jJUayUiOMoolJTISOHAR/B5VxwJSOtuRBdPv4SmDwUPM+8W5wcQJA+JW6m/8OK6M6oKR5R0Xz+oBlDzIRwqWPNmYw1frTZiZlQoykuRcy1oFJRMAofNBn4tqZRqDgHF6ehlJ8xat5bJp8dWMTF4yvki99EhRyOBGg+1KBNxjB5tZdadEf6gPE8KeV++XL4ePejhPsE2f6r++1/AFBLBwg6wgH1mAgAALYfAABQSwECFAAUAAgICADpXWFQ64/wTNEEAAAQJgAAFwAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWxQSwECFAAUAAgICADpXWFQCiLpwzwDAADtEAAAFwAAAAAAAAAAAAAAAAAWBQAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWxQSwECFAAUAAgICADpXWFQQrEDwpEAAADaAAAAFgAAAAAAAAAAAAAAAACXCAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAOldYVA6wgH1mAgAALYfAAAMAAAAAAAAAAAAAAAAAGwJAABnZW9nZWJyYS54bWxQSwUGAAAAAAQABAAIAQAAPhIAAAAA

问题2

如图,边长为22的正方形ABCDABCD内接于O\odot OEFEFO\odot O的一条直径,点PPADAD上,EPF=120\angle EPF=120^\circ,则PE+PFPE+PF的最大值为

UEsDBBQACAgIAJmiXVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmltz4yYUgJ+7v4LhqX2ILWTL9mai7GR3ptPMZLOZJrPTVyxhmQaBKlAs+9cvAlmS13bqW2onTR6CDuKm7xwOB/DFpzxm4ImkkgruQ9RyICA8ECHlkQ8zNTobwE+XHy4iIiIyTDEYiTTGyodeUbKqp6WW5/aKPJwkPgwYlpIGECQMq6KKDycQgFzScy5ucUxkggNyH4xJjG9EgJVpZaxUct5uTyaT1ry/lkijdhSpVi5DCPRYufRh+XCum1uoNOmY4q7joPZfX29s82eUS4V5QCDQ3xGSEc6YkvqRMBITroCaJsSHiaBcQcDwkDAf3hUS+HWUEvIbBGUljceBlx9+uZBjMQFi+DcJdJ5KM1LVM0K7KKNffxFMpCD1Yb8PQWSToQ9dz9OUWDLGPnRsYYanJAVPmFU5OFMiMPVN7ggzSeZldU9fRUjsm25ZntPYUARSEa0ABIFMCAnNk/1CZLQxNYpttBcIkYYS5D68xbcQTMt0ZlNTxLC5p7OyS6+Zq6aMNEZ+0S6xbgY4JAnhoS60QBntRLk3MJSLZGiT1wy5+9KQe++Q10FG21P+xpts3Z3YItczcE367igadK/5nyTSY24y7rwzPijjRQvu7kTXMWydV0rWFLEMZfFfhzEiThjJDwieUV5DvDFCBd3dLbpoQneOgtzZGXmBw8JTYxo8ciJlQbZut3j4g4Z69TL9CR02UqVbQv2BbYH8wxdURrXGqC7zvBpGGQ+UcSgl2i9Z+tTURafrHEMbdZuHVsa+pNezlCQqpIrL/VyuDXu3gO7/bdgiU6zo+Zorvcsixlzl0qc9EpI86Ka+8YcUc1lstRYtab3eUjx9Tmfeu85OT2dzv3X7HaeVJjId3I/02MOm+nYLj9Yu4C3XO7YOt/DmK4nsH9KclEFvaa2HMavebl7BdbqrMbb6J2xWT/rzRM3jeynWMcJ7vLa9i1wRZONUEUkx/7ctC5tGjTl+N5crffStPvYf49abSq9jdOqhJftGjv1D3Y8OQj3kHlvNzwNe2J7cVRk1YnQkxCc6adbTDAQvzr/n2wsrVRy7b8x1HGAfRyPCrceVAOSOKTZ1TOWZU95M5MjIU2TezpDNNvX1wFOagytb48oWvHJt0rFJ1yZeBWi3zaNRbaK9ViN8/mlp6O6243lNjuRNKv0/COF5FpO04Rpu53JlPJ51Drq9jCyodgNXsM5O1luFZDTUJhRTraQzrb0Y50aLeCgFyxS5D1JCeH1JZ814QkM1LgI73feI5oW52DbBWKR0JriqaIBiFlwxc523cMKxynzc5wLYBWPdzz1jHrF6Nl5ZqdaAPcA3hX4+21ulmCZDp0TYa7mDDhp4HaeP+h+9QW9DpGhQI7UvNia64G5KdWywniBnYzPa391s5TTcVU4Dp0F9CttxDmwYS3vJ36uMehd0ikeDxmSWir7YqR8TQSbrk2wrVYQGbyy+wVlOGcXpdLmnFyOsSF5HGA9GaPwQ4QQBr/8UjT2qh3ZtpcZ9v/2YEdUUOY51BdsJ5Z9x8BilIuPh8rp1kE9Hx7at9dCGQjCCa0f0eS437pmXIoV1gDZfDV5s9gVjEjwORb6wuD3vY6isZ8CNERr3vytmwD5r3tnRTWGXM71NryXPlk4A242fQrXnP7e6/AFQSwcI64/wTNEEAAAQJgAAUEsDBBQACAgIAJmiXVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztmM1u2zgQx8/tUxC81yZlSYmCKIXRHnaBtkiRy14ZamxzK5EqScdWXm3fYZ+pI1Jx5G5cNEYaoO364OHXDMnfnxqLPn+9bWpyA9Ypo0vKJ4wS0NJUSi9LuvaLV6f09cXL8yWYJVxbQRbGNsKXNOtH7vywNsmSvG8TbVtSWQvnlKSkrYXvXUq6oYRsnTrT5oNowLVCwpVcQSPeGSl8iLLyvj2bTjebzeRuvomxy+ly6SdbV1GCa9WupEPhDMPtOW1mYXjCGJ/+9f5dDP9KaeeFlkAJ7qOChVjX3mERamhAe+K7FnDFRis5wzlqcQ11Sf/UHjcHsl8ZkWt7g/6Dc0lnPGP04uWLc7cyG2Ku/8ZxJfV2DTv/UJn2Y7D7jamNJbakCacEuXKG9hptkSCwul2JkrIJZ/HD04JxnvMk+teiA0tuBAZlsUWsvZEhZGhdiNrB3Vic/L2pIPakw3itmoCYOA+oDk7uWoAqlOL2WZCqC6qP4ykNV76rgfiVkp80OMSfjZz6wh+qqqA/PNEH1BL0DRIx1qHkLMzSsTD8lg1nbMtDveOh95bH5uCPS7VqS+bRYx4HzpNoZtGk0WQ7JPBZx3W6/rukrbB4yjCQ7PvPp4PY/5FdbJUbqT7vq2/3lGazo5RmQWgWZGb3Iv+kkh6mS4Yy4J7//efbsMNjJIX14JTQI+xv+o6vuee/O/fDIDG+hhG/y1Df44dJ8Ch+RREAJrwICIPdZajsqTBKY2zlyDYmgZgawvdmF3Ih+t+gYZaDufEhqOxIqKbuVlBZo++5jpru0c4GtMc8SY+Vg2ezoEfGvz7Rk3RAkhU5S/P0ybQ59og/iuzcypVqoAKxjxaFfS60CY8/xulJQNubX4PtZYcZWVX7XJ/vyIaUgYsvItfklzmzl1a5Zp8qf0aqeUzMkWqR/5RUNfjdPj/05XFWzf7Pqo9h+XktqvAGNmz14119zJQfeU05nBrztOg/JznPTnma8KcC9COuGg9eNPrGeJvoorlNdgEfe/cg8zyak2hOoykO3ktU09ZKKv9tad3aLvB+/NCr8tC1r3J6nMro9+DL8uTke4/9feBneV3m3/tmNx3d86d3/yVcfAFQSwcICiLpwzwDAADtEAAAUEsDBBQACAgIAJmiXVAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKhWAAKggGNBQU5qiV5RanpmcUlqkWNKig+IkZdapKFUnFqSk1iUnuqTmJSao6RpzVXLxZUGMwxFUiM/KcsvMTcVaC4XyOCyxCKQ4Qq2CCusuaA26gF1OicWgAyBadNRUFKJiQEbV62aV6sCsgtJNdiK4JLKnFSEBmOQcwBQSwcIQrEDwpEAAADaAAAAUEsDBBQACAgIAJmiXVAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Vtrb9tGFv2c/oqB0AUS1JLnzWEgp5CdOCkQJ8amu1jsC6DEscSaIlWSsqW0/e97Z4aUREmW9bDjNJuGGXE4r3vOfc2Qbf84GcboRmd5lCYnDdLCDaSTXhpGSf+kMS6umqrx46vv2n2d9nU3C9BVmg2D4qQhTMtZP7hrCSpNXTAanTR6cZDnUa+BRnFQmC4njdsGisKTxrnyBJdvaLOjCG9ydv666XfOzpvEF6eSv/H907NOA6FJHr1M0g/BUOejoKc/9QZ6GLxPe0Fh5xsUxejl8fHt7W2rWlkrzfrH/X63NcnDBgKpkvykUf54CcPVOt0y25xiTI7/cfHeDd+MkrwIkp5uICPxOHr13bP2bZSE6S26jcJicNLwMEg40FF/YCAwN8em0QhwGOleEd3oHLou3FqZi+GoYZsFiXn+zP1C8UycBgqjmyjU2UkDtzzRQGkW6aQon5JyluOqf/sm0rduIPPLziEIbaAiTeNuYEZBvyOCBIYLER8dIelBDUVEIA41Cmo8xEydIBwxZJoQhjiHkptqIuGJeQz/CoERIfAEUYwoRZQgyuBWCCSgmWf6UmgrfTsehsu0hhXBxUwdY3DZOsbhouYXDCTcMLAOwaT9JUxrGF9QI4GtZApxHyYyFcIjiMEa4N7DCEZkZnhi5eAYmb8EcTM89RBVCMYD0c3IGNC5ifKoG+uTxlUQ50BylFxloGCz+7yYxtrCV1bMCSJH8B+0iD7rknenF/AE4yNzSbh4pRALvPA6K0ACBtmOTEFcQV0tdreYuYK6grtCuDbc9eSuqRMUc9eGs0MlrORju8inFuQjRgjgw6zeFgyZdRO7flPw8la6W6tomOCyVrla39zKA4VhewnDse/tMnGRje8CkUq2Oi+4jyOwppV5ycKkbswd5qxmlL7aXtKdzGF5yhm4gortpyQHcrqWUQGAmr/2WpmSHSTmPjPKmr0/jMBcbT09oeqLz+nhtS7OlaQsH4YIf3siDnWHMyDE5inbx1UwbpcgoHxg2pZ2XOhhbmDxGJJ0FpWlCZplaPYo8gTy5EKAPjIhWop5lDYxWtWitFD1UC1NpWfjPkRGE2VdzKa8CttHZeD+fSVwQ5zl81ALCzRDEYQgNUDSeOUy5sIq6CzqUmECL5UIIrOgSBrPf0cAhjQwzaMZsAMdj2aQWwyjZDQuarj1hmH1s0iXWodp7/p0hnP5RAd5sdgMsqV5Fuayp1qS9qwdB10dQ5r7yWgBQjdBbCzWznCVJgWqHDlv2OFsPtjW414chVGQ/B1Yr1KxD+NhV2fI/kyNiHYQ0x1ViaN1zlXiyCEbsU16aZqFn6Y5KAma/FNnprNQLaV8cDkQGTkTHPpNy0c+bRFFCPGIkgoawKO8FxgFB7/b4pgJwZTHFYM0C3rd8UyV69M3n3RRAAA5CiY6n4HXz4z9LNz8lJ+m8bxqlEZJcRaMinFmNwlgaJmRq5P0Y23BtCxDSt277qaTT2U4dGP9PB0Zh+pW0O2fpXGaITBAKiCS9Muy60rbxixt1grbNti2KKkyg86eA0K2hS27rrStgGe3tFJUQio5cTVNlCN3X9crqyUmQx8nUfG+uimi3vVcVNPB6UBeKm19TPJQY7aPl/SvHcR281Np4zANtdNk5trXnrevdZbo2GleAtSP03HumruV2WWPc30ZFINOEv5V98FmLwPjNAtYiGs6FzDUvWgIHV19CXVg1OBvIJirDXU/0xUgbjGOiHKVKB9lOgjzgdbFjA1nF/Nm2AlTLb9dBODWrasfRuBTmsD2MJjYrAZsaVSaYDvvZdHIaDjqgme/1nMdDqPcDBEuCG4gyUG2nvFTQEZhiIDt7LgYpJndogWFqTFOYAJrzs3Ot6ISdrpQedKY/Pc5fYF+QFNbniCzJ7MaD4PDdthMo2M9hL1drX4+jHUcQD1Ku7+Ar5rFQvd8gSV4fodZoCAeDYIZlnEwNb5pwbvZwT5eXeW6QACaZzwMgAj52fzxRV2RwCVGEx0uK8DcrIoBaC/sTkFZRSUzdj/eRWGonedPYS8fFTAZgUmdE4r6OrkBSVNQLzTBttkU286fcXkgMSH2fkrs08/EVdv+w6DIognquI4d16JDnU50mO3X4a4QMwT0r4lbdu7szcSF6MoRBNoHvs1wa4X9/t9xkPX1b39J/vi+NEFH4Fo9+FjqwXN8hPCLCgjrMdeQ7+rnfTeTP4d9kXvPs+SbonSbu/KPLf3M28R+kIChW1Aq+wK71dr5NicMsYc9UxsSFvTUmnI+n8fwOguRFgATINxkYrF2yfp3oKWXDodBEqLE5nqXFuR5lhFgY2cOx3FR1bxxg5Rd72HqzV5MVSFuXzttmhg6tZr92Ey1mCLcx8LD1KdSSeHZmUmLSbBcj2OFpe9j/0tz+R78zRKVYHEBKfmrMdrfzKhxXTPC+quE1kP1AzreFcbmuDfXADy9g47P81EPd8JL7jAajuII2hzE1U+JSRkAyxXbs4T1oaCzpGGBt/NdLPF8L0uUyvJmiq4rdjVFTi0zVZJ6L7ErFPLSlpcZV2qDTfGHsanVsNWpwlaTwJZwx7jVeaK41eS4xHDnvGXR5Jxne3xPtor66SLqzV1hP30q2Jm3he5vB3vzSXA/q3DfB/azp4LdZelcHYD6U4L+egH0XTF//WSqbgHzD4b8CyC+nPTG0zXJ0m+dI3R6hM6O0Osj1PljJfZe3Rd742ktb7pqPEwCct+OF+kb86bpkfKv/SHup8kSwm9cdnPushu2grCBkLg2A9cmggL2qb9AAfvUt/czYCat4HHDPQIJ9fR3vYERwSz+giwT0CLY/TE5DyGS0EeipI5OrvvmbrbswZ5p/d2C7SZGMJ5EcRRk05UztrmDoC2PMuFxBSgxX5HyMAa3PEnhlnAslGAee9iMHzQyNhvAWZIOaK+eBF5rPTIHth+Tn7Mgyc13HCue7mGYir4uptamLEAJJphKYMsjXHC3OQP+OCaeEAL+9RjG3DLFWlxygoFUQZjnCc6/Vep++RNQR1uYUsEVF4pTQaVfbb58oNLnHPvCJz715FruBPtWuKunVW/vY+5Bd8/7EEdbTCipuO/5SnFJeOUcpcSeJFjY11rC37RpfrSM9qLKaN+gH9BbuM5foGPE6qktui+3vdjqyN8mQHyNEa154XXwMRQ4OiUpVYxKSRXFpacD2CnFVDCpGBeg01KwDbjT9biTwxLbsyjrxctp7cVdZ4Dh5myq/vIl3O/ly8HHuqo8xti4s1vre2Zvl4jY4Hyql82P+KqlhWt/CKu9e2muUyj7NmaNQh2vO5Dc8/3MdgeSodOeTy6u/Qu2SK//s6JJl67Ru/vS80XTvnyiw0lWbjq3PXUGGnzlSwlhkGKfYHX/pvWhTiI3oPfuS6K3AZ4PwQcLhy0/u/IRIanr7Ouo/CK5rrLlS4+LFTX9eLFZQZPxUGcLPu+jCz+wqnG13hbsRLgvhQJt8DzzGeO22+67dn13B/r9g29QBt+gmz//ePFiXZxdljX4AqIeIJG+6xOCxaRiu88I9H6RbP9kYsH5lLkC45usa/uPCdg2Ic6Tjx3hTMZZ/7PD1wXjXGcHeYEyNN111LTsBK43+4DlDdz1IR+dVN9rPcDbz/+Xk5AduL1c4Tbejdv4K+EWL7/YxnK2lVOYCwk7PHOA4vPy1TZkjEqCAzK9fEGF923zfXmXLQ9343v4lfBN137IAGxjRQXlYOFYga3DtZ5u+eel+3jxO0L74XD5P6i9+h9QSwcIl50jYfcKAABsNwAAUEsBAhQAFAAICAgAmaJdUOuP8EzRBAAAECYAABcAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAICAgAmaJdUAoi6cM8AwAA7RAAABcAAAAAAAAAAAAAAAAAFgUAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAICAgAmaJdUEKxA8KRAAAA2gAAABYAAAAAAAAAAAAAAAAAlwgAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICACZol1Ql50jYfcKAABsNwAADAAAAAAAAAAAAAAAAABsCQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAAJ0UAAAAAA==

问题3

RTABCRT△ABC中,BAC=90∠BAC=90^{\circ}, AB=AC,  BC=32{AB}={AC}, \; {BC}=3 \sqrt{2},点DDACAC边上一动点,连接BDBD,以ADAD为直径的圆与BDBD相交的另一点为EE,求CECE的最小值

UEsDBBQACAgIACqcXVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmltz4yYUgJ+7v4LhqX2ILWTL9mai7GR3ptPMZLOZJrPTVyxhmQaBKlAs+9cvAlmS13bqW2onTR6CDuKm7xwOB/DFpzxm4ImkkgruQ9RyICA8ECHlkQ8zNTobwE+XHy4iIiIyTDEYiTTGyodeUbKqp6WW5/aKPJwkPgwYlpIGECQMq6KKDycQgFzScy5ucUxkggNyH4xJjG9EgJVpZaxUct5uTyaT1ry/lkijdhSpVi5DCPRYufRh+XCum1uoNOmY4q7joPZfX29s82eUS4V5QCDQ3xGSEc6YkvqRMBITroCaJsSHiaBcQcDwkDAf3hUS+HWUEvIbBGUljceBlx9+uZBjMQFi+DcJdJ5KM1LVM0K7KKNffxFMpCD1Yb8PQWSToQ9dz9OUWDLGPnRsYYanJAVPmFU5OFMiMPVN7ggzSeZldU9fRUjsm25ZntPYUARSEa0ABIFMCAnNk/1CZLQxNYpttBcIkYYS5D68xbcQTMt0ZlNTxLC5p7OyS6+Zq6aMNEZ+0S6xbgY4JAnhoS60QBntRLk3MJSLZGiT1wy5+9KQe++Q10FG21P+xpts3Z3YItczcE367igadK/5nyTSY24y7rwzPijjRQvu7kTXMWydV0rWFLEMZfFfhzEiThjJDwieUV5DvDFCBd3dLbpoQneOgtzZGXmBw8JTYxo8ciJlQbZut3j4g4Z69TL9CR02UqVbQv2BbYH8wxdURrXGqC7zvBpGGQ+UcSgl2i9Z+tTURafrHEMbdZuHVsa+pNezlCQqpIrL/VyuDXu3gO7/bdgiU6zo+Zorvcsixlzl0qc9EpI86Ka+8YcUc1lstRYtab3eUjx9Tmfeu85OT2dzv3X7HaeVJjId3I/02MOm+nYLj9Yu4C3XO7YOt/DmK4nsH9KclEFvaa2HMavebl7BdbqrMbb6J2xWT/rzRM3jeynWMcJ7vLa9i1wRZONUEUkx/7ctC5tGjTl+N5crffStPvYf49abSq9jdOqhJftGjv1D3Y8OQj3kHlvNzwNe2J7cVRk1YnQkxCc6adbTDAQvzr/n2wsrVRy7b8x1HGAfRyPCrceVAOSOKTZ1TOWZU95M5MjIU2TezpDNNvX1wFOagytb48oWvHJt0rFJ1yZeBWi3zaNRbaK9ViN8/mlp6O6243lNjuRNKv0/COF5FpO04Rpu53JlPJ51Drq9jCyodgNXsM5O1luFZDTUJhRTraQzrb0Y50aLeCgFyxS5D1JCeH1JZ814QkM1LgI73feI5oW52DbBWKR0JriqaIBiFlwxc523cMKxynzc5wLYBWPdzz1jHrF6Nl5ZqdaAPcA3hX4+21ulmCZDp0TYa7mDDhp4HaeP+h+9QW9DpGhQI7UvNia64G5KdWywniBnYzPa391s5TTcVU4Dp0F9CttxDmwYS3vJ36uMehd0ikeDxmSWir7YqR8TQSbrk2wrVYQGbyy+wVlOGcXpdLmnFyOsSF5HGA9GaPwQ4QQBr/8UjT2qh3ZtpcZ9v/2YEdUUOY51BdsJ5Z9x8BilIuPh8rp1kE9Hx7at9dCGQjCCa0f0eS437pmXIoV1gDZfDV5s9gVjEjwORb6wuD3vY6isZ8CNERr3vytmwD5r3tnRTWGXM71NryXPlk4A242fQrXnP7e6/AFQSwcI64/wTNEEAAAQJgAAUEsDBBQACAgIACqcXVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztmM1u2zgQx8/tUxC81yZlSYmCKIXRHnaBtkiRy14ZamxzK5EqScdWXm3fYZ+pI1Jx5G5cNEYaoO364OHXDMnfnxqLPn+9bWpyA9Ypo0vKJ4wS0NJUSi9LuvaLV6f09cXL8yWYJVxbQRbGNsKXNOtH7vywNsmSvG8TbVtSWQvnlKSkrYXvXUq6oYRsnTrT5oNowLVCwpVcQSPeGSl8iLLyvj2bTjebzeRuvomxy+ly6SdbV1GCa9WupEPhDMPtOW1mYXjCGJ/+9f5dDP9KaeeFlkAJ7qOChVjX3mERamhAe+K7FnDFRis5wzlqcQ11Sf/UHjcHsl8ZkWt7g/6Dc0lnPGP04uWLc7cyG2Ku/8ZxJfV2DTv/UJn2Y7D7jamNJbakCacEuXKG9hptkSCwul2JkrIJZ/HD04JxnvMk+teiA0tuBAZlsUWsvZEhZGhdiNrB3Vic/L2pIPakw3itmoCYOA+oDk7uWoAqlOL2WZCqC6qP4ykNV76rgfiVkp80OMSfjZz6wh+qqqA/PNEH1BL0DRIx1qHkLMzSsTD8lg1nbMtDveOh95bH5uCPS7VqS+bRYx4HzpNoZtGk0WQ7JPBZx3W6/rukrbB4yjCQ7PvPp4PY/5FdbJUbqT7vq2/3lGazo5RmQWgWZGb3Iv+kkh6mS4Yy4J7//efbsMNjJIX14JTQI+xv+o6vuee/O/fDIDG+hhG/y1Df44dJ8Ch+RREAJrwICIPdZajsqTBKY2zlyDYmgZgawvdmF3Ih+t+gYZaDufEhqOxIqKbuVlBZo++5jpru0c4GtMc8SY+Vg2ezoEfGvz7Rk3RAkhU5S/P0ybQ59og/iuzcypVqoAKxjxaFfS60CY8/xulJQNubX4PtZYcZWVX7XJ/vyIaUgYsvItfklzmzl1a5Zp8qf0aqeUzMkWqR/5RUNfjdPj/05XFWzf7Pqo9h+XktqvAGNmz14119zJQfeU05nBrztOg/JznPTnma8KcC9COuGg9eNPrGeJvoorlNdgEfe/cg8zyak2hOoykO3ktU09ZKKv9tad3aLvB+/NCr8tC1r3J6nMro9+DL8uTke4/9feBneV3m3/tmNx3d86d3/yVcfAFQSwcICiLpwzwDAADtEAAAUEsDBBQACAgIACqcXVAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKhWAAKggGNBQU5qiV5RanpmcUlqkWNKig+IkZdapKFUnFqSk1iUnuqTmJSao6RpzVXLxZUGMwxFUiM/KcsvMTcVaC4XyOCyxCKQ4Qq2CCusuaA26gF1OicWgAyBadNRUFKJiQEbV62aV6sCsgtJNdiK4JLKnFSEBmOQcwBQSwcIQrEDwpEAAADaAAAAUEsDBBQACAgIACqcXVAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1sxVnrb9s4Ev/c/SsIYQ9I72yHTz0KpwvnUdwC3Qcue4fD7fWDLDE2L7LkleTE6e7+7zdDSrIcp2lcp21ahSI5HHLmNy8q4+/Wi4zc6LIyRX7isRH1iM6TIjX57MRb1VfD0Pvu9TfjmS5melrG5KooF3F94imk7NZBb6S4j2PxcnniJVlcVSbxyDKLa1xy4t16xKQn3pswUNK/4MNJyORQijfnw2hy9mbIInXqy4soOj2beISsK/MqL36MF7paxom+TOZ6Eb8tkri2+83revnq+Pj29nbUnmxUlLPj2Ww6WlepR0CqvDrxmpdXwG5r0a2w5JxSdvzvH9469kOTV3WcJ9ojKPHKvP7mxfjW5GlxS25NWs9PvICChHNtZnNUAXaOkWgJeljqpDY3uoKlva6VuV4sPUsW5zj/wr2RrBPHI6m5MakuTzw6EqEKmOTdb+GRojQ6rxti1mx63LIb3xh96/jim91SMe6RuiiyaYxMyR+EEUXhISwiA+IHMMIJU0TCSAgjARE4ppgkgiAJE0RKaCUOMx9mcBp+K0UJYzBDOCWcE84IF9BViiggC3AtB1o/svwoPEgNJ4JH4JgQ8NgxIeHh+AaMlGMD51DCt28KqYG/4iiBHRQhkRFshAOgISLgDNAPKAGOAtkzK4ekBP8zIpE9DwgPCfAD0ZEzBe3cmMpMM33iXcVZBZib/KoEe+v6VX2Xaau+ZmCDFxvAP6Aw73VjBs5MYIbSAT4+PLK1jx4uchsVAIGCbANsmGu4G6WuS4VruGuka5SjkW6ldKROUCodjRSHStjKJ/aRL+zJx1AIwANPbxtB8NzMnh8b2XR917WGRhltRkM3GmHXP1AY8UnCSBoF+2xcl6sPKZHLaHdfiCYD8KadfVlvU8dzjz3bHf0ofLqke7nD/S075fJgD+WyAzF9EFEFCsX/9tnZUhwk5qfs6G/5+/MILMMnb894+MX3RBt4IMS5ljXt8wARPR2IQ8Nhpwj1+Jbj4zYZjxslkGqOtI0f13pRoVoCQXzeZWUfk2aTmgNOAkUCv5egB5iifbXJ0pijw60srcLtVO3jYGDzPmRGzLIuZ3PZpu1Bk7j/2EnckGflJtXCAZEVIwRKA+JjVG5yLpyCd1mXK0y83CeQmRUnPkb+DyRgqAqLynSKnets2anc6tDky1W9pbdkkbavdXGPOi2S69NOz82Mjqu6TwbV0qYoc9XTVs32YpzFU51B1XuJVkDITZyhx9odroq8Jl0g9yw7Wx6O9SrJTGri/F+AeluK/bhaTHVJ7GuBIlomuJy0daQNzm0dKaEasSRJUZTp5V0FRkLW/9ElLg6ikRCRL1kAhbOgAtbduSke8JHkUcQCxSKmaACKrZIYDTykIxZFCipyBoUAvMGih6YkFc3W+uZS1zWIX5F4ratOdbMSvafX+b46LbLN0LIweX0WL+tVaW8M4GYlSjXJZ5m2qrQYQ32dXE+L9aXToe94/XK3xHDqTjCdnRVZURJwP67gwLOmnbrW0uDROipqaailaIBCpt08i7ilsO3UtZYKUHZHa0RlrJWTttuYirj+tlVZG8FyfZWb+m3bqU1yvREVFzgLqBqT3ebJnovn+Pie9Y3jzN6EWltcFKl2dswc/db8+FqXuc6c3eUA/apYVY7cncwee1Xpn+N6PsnTf+gZeOzPMYbMGg7iSDcCpjoxC1joxhtVx2gG/wTB3GiqZ6VuFeIO44Cws1hHLEsdp9Vc67pDw3nFhow6Ydrjj+sYgroN9AsDEWUIaC/ita1pwJOWrfRVUpolWjiZQly/1hsbTk2FLNKe4KiSCmRLMEoBGDUCAXfbVT0vSntfi2scwRCwhjNXeA1uoTyF8LOGfY+OhmykyF9J9VtZH/GXLweEvgRordVbx7Fb6Uwv4Ha3Nb5hZUMHwE+K6f8gWnXZ0M1v1A/TneUHgTV8bBrvIXG2nMedSrP4DgNUL8RZfj9dXVW6JqC7IYPC5Q6vkb3pHzp7alz2yqx1et8OLFyVZcJHjDPBqZBCKYhhwvIEp3rfRUUrLkYFx0b1R+9BDqwhzqCe7di3/83icqZ//0v+57eNOzhFPojJWYvJ8PQeBORjGJx9EgZ+aDHAZuqafSHgykEgDoBgfwTk50Jg0iJAB+Ro2y/2dIrJ13IK6RA5BBBqOTwAy2d3iS2F5quFLvH7XKsyq1JgsmrZj1QTwj+s516a6Ct6Oy93Sh7BZdD+MBlRxnzGH1X7jmKrDD+QuRhPmxAPqTGeVkW2qvVlApkl33whdCdtyi2O5TnQK9+qH3G0OLVkENTNe0iCHWo2405chuoDuSkd6jlk6BxMHG+6rf02L383aarzDtA4h8RoUXL5iI7w8xMUn9qVA93aJejCVlE9zR7gceeNx03I38hRDf52dEaGZHLf3T4aAM+/TgB0WLHwMaPYOBYD+xI09FUADwMj4275iLKQCxH4YHWhz0P/88e+pFgs4jwlub1cnpkyybS3udfEFIOgDYBHCM05AhIz1LNT4qpuyRJTOuYNyx2goEzpeTGSP6fL7uegD/qG+qBrkGIZJ6ZGjIIGY7gP6fwGTl1AeUnW1JLdUZewaPPXiTVzUZTZ2ffMDdv14GWlWZOJWzhxFBNu4y3gPhF25URCKAf9K6ak4GEkIBfQACkVFj4j5UdBEFAluZBMQMhwZ/std8JVrirHu6O5AuUfYhvf51hJg8D3zAOBtCbxFnT66+mAnL+DPu/K6p6JXDxuINuefPFJntxex/azj37elG3YfZIr05FkfhAKITlVkQoQG6xaRiGFa64veUDRn0P5pV0ZssuqugfVhQOq3gEGLhnscWwyy67VvaV/ivcSfdPJ9+xOHK/WJjNxebdzE3zQvfkT3DuMDs5kGWtS2e+XeoZUv04G5PTdgLTds53uZLt78e7PhxJdZqqNd2Qf0//D7uH0zuiXDZ97lIpDdpDVN1q8Z/enH8pZV48bfdVw62z6K2as3lX1oToBS/0R51JSP+KcM+rbP8a+dzdbn/Z//OfKgaDJDIvALjUAYrufZa61XuLXs5/yX8o4r/Av7Dt3jqeifdz/1mE/bTZ/UX/9f1BLBwhmAoR1AQkAAB0gAABQSwECFAAUAAgICAAqnF1Q64/wTNEEAAAQJgAAFwAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWxQSwECFAAUAAgICAAqnF1QCiLpwzwDAADtEAAAFwAAAAAAAAAAAAAAAAAWBQAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWxQSwECFAAUAAgICAAqnF1QQrEDwpEAAADaAAAAFgAAAAAAAAAAAAAAAACXCAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIACqcXVBmAoR1AQkAAB0gAAAMAAAAAAAAAAAAAAAAAGwJAABnZW9nZWJyYS54bWxQSwUGAAAAAAQABAAIAQAApxIAAAAA

问题4

(2016武昌区月考)圆OO的半径为33,在RTABCRT△ABC中,BB在圆OO上,A=30\angle A=30^\circ,点CC在圆OO内,当点AA在圆上运动时,求OCOC最小值

UEsDBBQACAgIACmBRFIAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmltT4zYUgJ+7v0Kjp/aBxHLsJDCYHXZnOmUGWKYwO31VbMVRUSTXkonDr68sJb5sEjY3mkDhAfkouvk7R0dHks8/52MGnkgqqeABRC0HAsJDEVEeBzBTw5M+/Hzx6TwmIiaDFIOhSMdYBdAvSpb1tNTye16Rh5MkgCHDUtIQgoRhVVQJ4AQCkEt6xsUtHhOZ4JDchyMyxtcixMq0MlIqOWu3J5NJa95fS6RxWzcp27mM2nGsWjqFQA+aywDOHs50u43ak46p5zoOav91c237OaFcKsxDAoF+oYgMccaU1I+EkTHhCqhpQgKYCMoVBAwPCAvgXSGBX4cpIb9BMKukOTnw4tMv53IkJkAM/iahzlNpRsp6RmgXZfTPXwUTKUgD2OtBENtkEEDX9zUuloxwAB1bmOEpScETZmUOzpQITX2TO8RMknlZ3dONiIj9xZuV53RscAKpiNYEgkAmhETmyb4hMmqZGg3X2guFSCMJ8gDe4lsIprP02aamiGFzT59nXfr1XDVlpDby8/YM63qAI5IQHulCDcpoK8rdvqFcJAObvGXI3mtD7n5AXgUZbU75G6+zdbdii1zfwDXph6Oo0b3if5JYj7nOuPPBeK+MmxbsbUXXMWydN0rWFLEMZfFfxzNinDCS7xE8o7yCeG2EErq7XXRRh+4cBLmzNfICh4WnRjR85ETKgmzVbvHwB4306mX6Ezp+pEq3hHp92wL5hzdURrXGqC7zshqGGQ+VcSgztF+z9Kmui47nHEIbVZv7VsaupFezlCQupJLL/VyuDHu7gO7/bdgiU6zo+Yorvd0ixlzlwqs9EpI86Ka+8YcUc1nsuZqWtFpvKZ6+pDP/Q2fHp7O537r9jtNSE5kO7od67FFdfduFRysX8JbrH1qHG3jzpUR2D2mOyqA3tNb9mFV3O6/gOt5yjK3eEZvVk349UfH4PhOrGOEjXtvcRS4JsnGqiKSY/2zLwqZxbY7fzeVSHz2rj93HuPGm0u8Ynfpowb6RY/+Qd+og1EXuodX8MuDG9uSuzKgQowMhPtJJs5pmKHhxED7fXlip5Oi9M9exh30cjQm3HlcCkDum2NQxlZ+d2RVFjow8RebXZ2SzTX098JTm4NLWuLQFL12bdGzi2cQvAW23eTSqTbTXqoXPPywN3nY7nrfkSN6l0v+DEJ5nY5LWXMPtXC6Nx7fOQbeXkYZq13AFq+xktVVIRiNtQmOqlXSitTfGudEiHkjBMkXuw5QQXt3WWTOe0EiNisBO9z2keWEutk0wEil9FlyVNEAxCy6ZuddrnHAsMx/3pQC2Yay7uWfMY1bNxksrVRqwB/im0I9ne8sUU2fozBB2W26/g/p+x+mh3qnf766JFPUrpPaHtYk23M1MHWusJ8hZ24x2dzcbOQ13mdPAaVidwnac5V7MaTmo5/kd99T10emppx/8/e8zfy8zqh3SMR4bGnNaKPpqJ4JMhJmsTrmtVBLqv7PYB2c5ZRSn08WeXo2wInkVfTwYofaRwlECHmoPBqRe6oalF9Oz+KZYzT3fCubqf74s/+QiRWsrrt7oykq1TwgsgyHV8Dke6wp2FJR/weFjnIqMR4tL4V6IoUOb5GpoAyEYwZX/+jKXa1fXC8HHKkDrLzCvZlPhiISPA5E31suXXROV1cS5NkLtSnnJxNllGT05uClsc0y46qZzaTRUJ92ufVzVnn/JdfEvUEsHCOY4id3/BAAAayYAAFBLAwQUAAgICAApgURSAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7ZjNbts4EIDP26cgeK9EypIcBVEKo3vYBdoiRS+9MtLY5q5EqiQdW3m1vkOfaUek4shtEjRGGqDt+qDh3wzJb0Yj0mevdm1DrsBYqVVJecQoAVXpWqpVSTdu+fKEvjp/cbYCvYJLI8hSm1a4kmbDyL0e1qJsng5toutKWjXCWllR0jXCDSol3VJCdlaeKv1OtGA7UcGHag2teKMr4byVtXPdaRxvt9voZr5Im1WMJm28s3W8WrkIJSW4aGVLOhZO0e6B9nbm9RLGePzx7Zswz0uprBOqAkpwQzUsxaZxFovQQAvKEdd3gEvXSlYznKMRl9CU9G/lcJdQDUsk1cZcof6oXNIZzxg9f/HHmV3rLdGX/+C4kjqzgb2+r8TDGOx+rRttiClpwilBwJyhvERZJEiu6daipCziLPx4WjDOc54E/Ub0YMiVQKMstIiN05U36VuXorFwMxYnf6trCD3pOF7J1rMm1gG6CSe3HUDtS2H7zPus9+6f2pMKPri+AeLWsvpXgUX82URpKPwl6xqGKAo6IFegrpCINhZ9z/wsPfPDr9kYbDvu6z33vdc8NHt9XKqRO7IIGoswcJEEMQsiDSLbI4FPKqzTDs+SdsJguKGhaug/i0dnf+N2sZN24vXFUP3zwNNsdpSnmXc0825mt07+SV16P10ylgH3/OXzw7D9a1QJ48BKoSbYXw8dX3PPf3fu94NE+wom/C58/YAfJsGj+BWFB5jwwiP0cp+hsqfCWGltakt2IQmE1OCf273JpRg+RuMsEX8AIjsSom76NdRGq1uOk6ZblLMR5TFvzmPx82zm+Wf86wiO0vHzkBU5S/P0yXxxbEg/iuzCVGvZQg3iEC1+5J4LbcLDxzede7SD+DXYXvSYgWV9yPX5QtanCFx8Ebgmv0zMXhhp20Oq/Bmp5iERB6pF/lNSVeD2+3w3lKdZNfs/qz6G5aeNqP2Ja9zq+5v6lCk/8lpyf2rM02L4zXOenfA04U8F6EdcLe68WAyN4fbQB3Gd7A0+9q5BFnkQ8yBOgijuvYfItmtkJd3DrrUbs8SL8V1H47Hr0MvpcV5GvTsPx9H8e8P+1vCzHI/5957s4sm9Pr75E+H8P1BLBwiKQBIhQAMAAOYQAABQSwMEFAAICAgAKYFEUgAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqFYAAqCAY0FBTmqJXlFqemZxSWqRY0qKD4iRl1qkoVScWpKTWJSe6pOYlJqjpGnNVcvFlQYzDEVSIz8pyy8xNxVoLhfI4LLEIpDhCrYIK6y5oDbqAXU6JxaADIFp01FQUomJARtXrZpXqwKyC0k12IrgksqcVIQGY5BzAFBLBwhCsQPCkQAAANoAAABQSwMEFAAICAgAKYFEUgAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlWm1v2zgS/tz9FYSwB9wBicN3kUXShZNLsQt0t8Vm73A43BdZZmw1suST5MTu7f33nSEl2Y6TNKnbdO8WrUKRHA4588wblRx/t5zl5NpVdVYWJxEb0Ii4Ii3HWTE5iRbN5aGJvnv1zfHElRM3qhJyWVazpDmJFFL266A3ULHEsWQ+P4nSPKnrLI3IPE8aXHIS3UQkG59Er02spD7nh0PD5KEUr/96aIdnrw+ZVadanlt7ejaMCFnW2cui/CmZuXqepO4inbpZ8qZMk8bvN22a+cujo5ubm0F3skFZTY5g8/poWY+PJpPRANqIgHhFfRK1Ly+B79bqG+HXcUrZ0T9+fBP2OcyKukmK1EUERV9kr755cXyTFePyhtxk42YKimLWRGTqsskUlKE5CH6EVHPQyNylTXbtali70fXSN7N55MmSAudfhDeS94JFZJxdZ2NXnUR0QI2QMZdKUkuZolxFpKwyVzQtMWs3PerYHV9n7ibwxTe/pWI8Ik1Z5qMEmZJfCSOKwkOYJQdExzDCCVNEwoiBkZgIHFNMEkGQhAkiJbQSh5mGGZyGn0pRwhjMEE4J54QzwgV0lSIKyGJcy4FWW8+PwoPUcCJ4BI4JAY8fExIejm/ASAU2cA4ltH9TSA38FUcJ/KAwRFrYCAdUzIiAM0A/pgQ4CmTPvBySEvzPiET2PCbcEOAHoiNnCtq5zupslLuT6DLJawA9Ky4rsLy+Xzer3Hn1tQNrvNgB/AOK7AOQKwpmEOwEZig9wEfDI2lrHxu4yG1UAAQKsh1gw0LDwygNXSpCw0MjQ6MCjQwrZSANglIZaKTYV8JOPr4pHz3wct0pm9mQjaEAgAWe3DeC4JmZPzs2su3q0PVGRhltR00YtdjVewoiOkHEU4Bi+20rDnivv1itt1X0wP/3z+6mG3s21eLBLcP8hqDdfiFIPQaw/ZxA3Gsg/J79xJM2vFfALRwfVqje8rf9DKnbXppHb8+4efY9IW3En0fNUu+6S4y7qt1dY3pnYAsta9vPA799PPz7BsFe/erhLY+PuhR83CqB1FOkbZ24cbMa1RILonmfizWmyjYhx5zEisR6Iy0fYGLWap2bMTObrdyszHaC1jgY+2wP+RBza8jUXHbJ+qBN17/upGvIrnKdYOGAyIoRAgUB0RiP20wLp+B9ruUK0y3XBPKx4kRjzL8n7UJVWNZZr9ipy+e9yr0Os2K+aLb0ls7G3WtTAnWS+5qvpR+X6dVpr+mWk0vqZpMtVEnrYixUTVu12ovjPBm5HOreC7QDQq6THCOF3+GyLBrSBTkZeXa+Ljx2izTPxllS/B1w70qwnxazkauIfy1RSM8El5O7C0goegJNWpbV+GJVg52Q5T9dhattPNBCQ9XEpaZKCzDlVTsVi4HlWtFYWS1sbMFM0wRN3JgBkPPY0pgrZWIIBKs7pyyw8zu76wvXNCB+TZKlq3vVTSr0n43OD/Vpma+H5mVWNGfJvFlU/s4Ap6tQqGExyZ1XpUcZCuv0alQuL4IOdeD1y2qO8SWcYDQ5K/OyIuCAcDAgaNtRaD0NHq2nop6GeooWKGTazzPLPYVvR6H1VIByOForKmOdnLTbJqtJ6G9blbcRLNMXRda86TpNll6tRcUFwQLq1mi3ebLPxfP46Jb1Pcoa+R3WqLReGyOWKfcZI1diwAQ1UlptDdxP5NoYOd5YpJHWWMZjoXtj1GZgmNbWGg2XPqXV2hhvTYEF/+GNkf+f2GIboztLnJVjF2IqC/Rb88dXripcHqyuAOQX5aIO5OFk/tiL2r1LmumwGP/sJpA/3iWYwBs4SCBdCzh2aTaDhWG81XSCVvA3ECyMjt2kcp1CwmECDn4Wi9p55ZJxPXWu6dEIPrEmo0GY7vjHTQIlhi87Zhnkt0NAc5YsPargR/NO+jqtsjkaOBlBlXHl1iY8zmpkMd4QHFVSg2wp5kwAo0EgIpIsmmlZ+W8GSYMjGACWcOYaP8p0UL6FVLiEff9MDwj9C2Dprdw7iuftcjdzkN02x9drfaQAvEk5eg+psi/Gwvxa3zDdWzomm0loWm8hST6fJr0O82SF8Wgjv3p+P/YW0vrgZbZ049vIegBqsvT+sPI/P/Qp1h8fvXqLTxi9hRlwgjiBivJj3/4rT6qJ+8+fiv9+29pzUMxHVPT9s6ro7eVl7RoU/lBJL76Se2jwkA6MVBB7qeFQYpgY77rA9JANhMYbu2GxVoaK2Hx5LaflbJYUY1L4mvwsq9LcRetyMKHelhOGOg8KXTTdRBqYtSx2IAP/wY+RLSTpRyDbCDibmG0H+E806XWwb6YQVAvwVcCw80oaXr7PxmMXiuNynqRZs8JSz7SpMZu44hpOXULUI0vqyVY0OAJtP+EuWXAP5mc/sDDs18+SpsqWZBgWDgPFkGOoGiht4I7GONOQ2i1+rRgKz2goQ6N68dy/iyBHHfICVtLZZZbuBfo771rbmKc7YJ8+DPa2f55+kn8yHlK+bz/RQ1lwULmPg9JBrDllglHBmIr9cYJ/4uUeLgVK+lLe2Of2z8dBNXwKVMNPgqqrzvZ0zKSAesErokvTkP6dCyVSOC3zv85Y+cJyI0as0WIDZRje0yi3GgvkgBYdcGWUkEZZGYN/2WcH6w1EnVtYDUMofbsD2eXDkGEAW0fKXcS268gvGUo3vWRXwcFLdvH4sOa6fyi+FQOz2TzPgGYvrC7cBMfvhms3800ehqtuuXWATL5i7tt0FM2sErGOIaQZrvznCZ+BIJjB/ZEbpSkzknm8AEcrRMyVjpmkMRQr5nMhCIrM0aF/KPAS4XyBvXvtuHJujpfDt8UvVVLU+PvMnZD9BcA+3QF7+jSwp78XsLXhAB0TMRMAqwlgQ+3JrLSWwuVfWjCCFm00Aq04VwA2t1yznXvy/yra/b47edPjfQkN7y+rG7CfPyWLnn9SFtXGg47NKDRPvo8wDyt7nFHcGZuDVXztZHm3T54GjM53wMme5pPZ8/nkBjgxbQOsejQ8CA5lGlCAyBvbLkALKRRXgkIUpuDWf1SXnQRzyHbM4ewpvnr2lXyV6/bTyWONQSijpWRWG2YgZYebzaEGI1FWcQvWgH+LEKxBg2dbqyG5UwvGouNnrHPLdFHfQuosIDXcQSovU/aRWtez68Dw9I9xXuKu8c87vkxeTRbLLM+SarXjBHc6G3uMs8kvETDP79P7+6cFzPe/iyIG8pJiMdU2ZsZKKoUNVYwYMC0ol5Iqy60V9qM3DN5fJx+ChMmvFf+ONj82+99ztn9g9+o3UEsHCEboQZqUCQAALCgAAFBLAQIUABQACAgIACmBRFLmOInd/wQAAGsmAAAXAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9kZWZhdWx0czJkLnhtbFBLAQIUABQACAgIACmBRFKKQBIhQAMAAOYQAAAXAAAAAAAAAAAAAAAAAEQFAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbFBLAQIUABQACAgIACmBRFJCsQPCkQAAANoAAAAWAAAAAAAAAAAAAAAAAMkIAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAKYFEUkboQZqUCQAALCgAAAwAAAAAAAAAAAAAAAAAngkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAgBAABsEwAAAAA=

问题5

(18槐阴一模)在RTABCRT\triangle ABC中,ABC=90\angle ABC=90^\circACB=30\triangle ACB=30^\circBC=23BC=2\sqrt{3}ADC\triangle ADCABC\triangle ABC关于ACAC对称,点EEFF分别是边DCDCBCBC上的任意一点,且DE=CFDE=CFBEDEBE、DE相交于点PP,求CPCP的最小值

UEsDBBQACAgIAK2kdVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmk9z4jYUwM/dT6HRqT0ELIOBzcTZye5Mp5nJZjNNZqdXYQujRkiuJQfDp19ZAtssOAVDCkmTQ+Qn659/7+npSeLiUzZh4IkkkgruQ9RyICA8ECHlkQ9TNTobwE+XHy4iIiIyTDAYiWSClQ+9vGRRT0str9/N83Ac+zBgWEoaQBAzrPIqPpxCADJJz7m4xRMiYxyQ+2BMJvhGBFiZVsZKxeft9nQ6bS37a4kkausmZTuTYTuKVEunEOhBc+nDxcO5bnel9rRj6rmOg9p/fb2x/ZxRLhXmAYFAf1BIRjhlSupHwsiEcAXULCY+jAXlCgKGh4T58C6XwK+jhJDfIFhU0pwcePnhlws5FlMghn+TQOepJCVFPSO08zL69RfBRAISH/b7EEQ2GfrQ9TyNi8Vj7EPHFmZ4RhLwhFmRg1MlAlPf5I4wk2RZVvf0VYTEvukuynM6MTiBVERrAkEgY0JC82S/EBm1zIyGK+0FQiShBJkPb/EtBLNFOrepKWLY3NP5okuvmqtmjFRGftFeYN0OcEhiwkNdaIUyakS5NzCU82Rok9cMufvSkHvvkOsgo90pf+NVtm4jtsj1DFyTvjuKCt1r/ieJ9JirjDvvjA/KeNWCu43oOoat80rJmiKWocz/63hGTGJGsgOCZ5SXEG+MUEB3m0UXVejOUZA7jZHnOCw8NabBIydS5mTLdvOHP2ioVy/Tn9DxI1W6JdQf2BbIP3xFZVRrjOoyz6thlPJAGYeyQPslTZ6quuh0nWNoo2zz0MrYl3Q9S0miXCq43C/l0rCbBXT/b8MWqWJ5z9dc6e0WMeYq1z7tkZD4QTf1jT8kmMt8z7VqSfV6S/DsOZ157zo7PZ0t/dbtd5wUmkh1cD/SYw+r6msWHtUu4C3XO7YOd/DmG4nsH9KclEHvaK2HMateM6/gOt3NGFv9EzarJ/15ouTxfSGWMcJ7vLa7i9wQZONEEUkx/7ctC5tFlTl+t5QLffStPvYf486bSq9jdOqhNftGjv1D3Y8OQj3kHlvNzwNe2Z7cFRklYnQkxCc6aeppBoLnB+HL7YWVCo7dN+Y6DrCPoxHh1uNKADLHFJs5pvLcWVxRZMjIM2TezpHNNvX1wBOagStb48oWvHJt0rFJ1yZeAajZ5tGoNtZeqxI+/7Q0dJvteF6TI3mTSv8PQnieTkhScQ23S7kwHs86B91eSlZUu4UrqLOTequQjIbahCZUK+lMa2+CM6NFPJSCpYrcBwkhvLyts2Y8paEa54Gd7ntEs9xcbJtgLBI6F1wVNEA+C66YuddbOeHYZD7ucwHsirHu554xj1g5G6+sVGrAHuCbQj+f7W1STJWhs0DYa7mDDhp4HaeP+h+9QW9LpGhQIrUvtia64m4W6thiPUHO1ma0v7vZyWm4m5wGToLyFLbjHNgw1vaSvxcZ5S7oFI8GjcmsFX2xUz8mglSWJ9lWKggN3lh8g9OMMoqT2XpPL0ZYkayMMB6MUPkhwgkCrv8UjT0qh3Ztpcp9v/2YEdUUOZ7oCrYTyj/j4DFKRMrD9XXrIJ+Ojm1b9dCGQjCCS0f0eSlX7pnXIoU6QNuvBi82+4IxCR6HIltZ3J73MVSWM+DGCJX73w0zYJ817+zoptDkTK/uWnJj6FIl3a78Eqq9/NnV5Q9QSwcIzppGf9cEAAAYJgAAUEsDBBQACAgIAK2kdVAAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztmN1y0zoQx6/hKTS6J5Yc26k7dZkM5wJmgCnTG25Ve5OIY0tGUpq4r8Y78EysJTd1oGFopqczcMhFVl+7kn5/eWPl7OW2qck1GCu1KiifMEpAlbqSalnQtVu8OKEvz5+fLUEv4coIstCmEa6gaT9y54e1STpL+jbRtgUta2GtLClpa+F6l4JuKCFbK0+Vfi8asK0o4bJcQSPe6lI4H2XlXHsaRZvNZnI730SbZYQhbbS1VbRcuglaSnDRyhZ0KJxi3D3vzdT7xYzx6OO7t2GeF1JZJ1QJlOCGKliIde0sFqGGBpQjrmsBl66VLKc4Ry2uoC7oG+Vwl1D2SyTl2lyj/+Bc0ClPGT1//uzMrvSG6KtPOK6gzqxh5+8rUT8Gu1/pWhtiChpzShAwZ2iv0OYxkqvblSgom3AWPjzJGecZj4N/LTow5FpgUBZaxNrp0of0rQtRW7gdi5O/0xWEnmQYr2TjWRPrAGXCyW0LUPlS2D7zmnVe/nE8qeDSdTUQt5Llvwos4k9HTn3htawq6E9R8AG5BHWNRLSxqD3zs3TMD79hw2Hbcl/vuO+94aHZ++NSjdySefCYh4HzOJhpMEkw6Q4JfFZhnbb/LmgrDB43DFT2/WfRIPYPsouttCPV5331nz2l2fQopZkXmnmZ2Z3Iv6mkh+mSoQy4569ffg7bP0alMA6sFGqE/VXf8T337P/O/TBIjK9gxO/C1/f4YRI8il+ee4Axzz1Cb3cZKn0sjKXWprJkG5JASA3+e7MLuRD9j9Ewy8HceB9UdiRUXXcrqIxWd1xHTXdopwPaY56kh8rB06nXI+Xfn+hJMiBJ84wlWfJo2hx7xB9Edm7KlWygArGPFoV9KrQxDz/Gycyj7c2fwfaiw4wsq32uT3dkfcrAxeeBa/zHnNkLI22zT5U/IdUsJOZANc9+S6oK3G6f7/vyOKumf7PqQ1h+XovKv4ENW/1wWx8z5UdeUw6nxizJ+88s4+kJT2L+WID+i6vGvReNvjHcJrpgbuJdwIfePcg8C2YWzEkw+cF7iWzaWpbS/VxauzYLvCjf96o8dO2rnBynMvrd+7I8mf3qsb8L/CSvy/xX3+yi0T0/uv1T4fwbUEsHCLNzFt1AAwAA9hAAAFBLAwQUAAgICACtpHVQAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoVgACoIBjQUFOaoleUWp6ZnFJapFjSooPiJGXWqShVJxakpNYlJ7qk5iUmqOkac1Vy8WVBjMMRVIjPynLLzE3FWguF8jgssQikOEKtggrrLmgNuoBdTonFoAMgWnTUVBSiYkBG1etmlerArILSTXYiuCSypxUhAZjkHMAUEsHCEKxA8KRAAAA2gAAAFBLAwQUAAgICACtpHVQAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1abW/juBH+vPcrCOEK7Laxw1e9LJw7OM4Gd8Du3aK5FkVfPtASY6uRJZ0kJ/b2+t87Q0qyHWezcZLLAk3iUKKGQ84zw3mGSkbfrxYZuTZVnRb5iceG1CMmj4skzWcn3rK5HITe9999M5qZYmamlSaXRbXQzYmnULIfB3dDFUjs02V54sWZrus09kiZ6QaHnHg3HkmTE+88DJT03/HBOGRyIMX52SAaT84HLFKnvnwXRaeTsUfIqk7f5sVPemHqUsfmIp6bhX5fxLqx882bpnx7fHxzczPsVjYsqtkxTF4fr+rkeDabDqH1CJiX1ydee/EW9O6MvhF2HKeUHf/tw3s3zyDN60bnsfEImr5Mv/vm1egmzZPihtykSTMHoFgUemRu0tkcwPApGH6MUiUgUpq4Sa9NDWO3bq31zaL0rJjO8fkrd0Wy3jCPJOl1mpgKpvBIUaUmb9pHrJ3iuBs8uk7NjdOCV3YCxbhHmqLIphpUUPIbYURR+BAWkSPiB9DDCVNEQk8IPQER2KeYJIKgCBNESmgldjMfnuBj+K0UJYzBE8Ip4ZxwRriAW6WIArEAx3KQ9SOrj8IHpWFF8BHYJwR8bJ+Q8OF4BYqUUwPrUMK3VwqlQb/iaIHtFCGREUyEHSpgRMAa4D6gBDQKVM+sHZIS/GFEonoeEB4S0Aemo2YK6FyndTrNzIl3qbMaXJzmlxXEWX9fN+vMWPjajo132BF8g0T6CcQVOt1FBTyh9Ag/EAlHsouGLb/IXa+AEyjYdoQNcw13vdTdUuEa7hrpGuVkpBspnagzlEonI8VTLezsE4fYF27Zx9AI8Aeu3jaC4LqZXT82sr313a0NNMpo2xu63ghv/ScaIx5lDNuatamWh03aT+lSxEPnPCgw3aLumFNxdYCZT0T3TmwVPbI/9rM3pXiSmY+Z0d/Zec9jsAwfPD3j4YvPKWkUPA/MPNiPpgBnVfuzBvTOFOda1rbP4/7o4e5/ajrs4Vf3Tzk67sh41IJA6jnKtvmjMYsaYQkE8XnPyj6SZkvNASeBIoG/RdBHSNG+2rA0cnS4w9Iq3KVqHzsDy/vAjMiyjrO57Gj7qCXu3/aIG3hWbqgWFoiqGCFQGhAfs3LLubAK3rMuV0i83CfAzIoTHzP/ZwgYqsGiTntg5yYre8gthmleLpsd3OJF0l02BUjrzNZ6rXxSxFenPdKtJqPrZlst1EubIszVTzs12qtRpqcmg3r3AuOAkGudYaawM1wWeUPaEODSs+psPTgyyzhLk1TnfwW/d8XYT8vF1FTEXhZopFWCw8ndhaOSysnERVElF+sa4oSs/m6qAovKIQsUFEecMSlCGnlk7Z4IEQyZoj6VEQ15EApI+nWsMcSZCoehiKDgEkEkRIjxv777WQTFkJ3bXF+YpgEAaqJXpu7Bm1W4g7ZufqxPi2zTVRZp3kx02Swre1qAqSo0a5zPMmPBtH6Gkjq+mharC4ei73T9si4xw7gVTGeTIisqAluQKzBm1rZT11oZXFovRa0MtRKtq1Bp/5xF3ErYdupaKwV+dktrTWWss5N206Q1cfe7cWWjBAv0ZZ4277ubJo2vNqbiABcDdRu2uzrZc+kcHd+Kv1G7M7poXBSJcZEsnPzO89GVqXKTucDLwfXLYlk7cbcyu+xlbT7qZj7Okz+bGezajxrTZgMLcaIbAxMTpwsY6PpbqDWGwV/AMNebmFllOkDcYpwj2lWSuqyMTuq5MU3vDbctNmLUGdMtf9RoSOw22S9SyCoD8PZCr2w1BVupbLfgqI6rtMQIJ1PI7VdmE8NJWqOKZMtwhKQG22LMVOCMBh0B59plMy8qe0LTDfZgEljBmms8AneuPIUEtIJ5X9MjQt+AL22Y251idZvMLOBIt9O/GWuzBfibFNN/Q4LqKdA93+ANjz+zFYjOyrnu8cv0GvPRVkazun6+vKxNQwCogQKo1lhebD3+sBs8kAbTlUluO936pkYl1KqA35/6nGctwx3vRqnt3lvuBE2QQxBD2/ftPzNdzcx//pD/99s21B1md+I96fCuf62a1+LN4ahPXgz1Q2Flw0BwqmhIA+WHYRDwr4fzeCuu2YEIj79KXLugZOzJcc1+f7zjYrHQeUJyW5Z+SKuqqLxNRaSpTSyanXjvgb/+MT4ik3+1iC2bTuLMaW11fcEnZ18v6rfwHYa+T7mSVAShhBoncIAP1QuE+A44+XJhKnxf2Zlv4QEly079UPltNfdZzLao8wGgDeEwZb8YVHGM+YwfBmOd4WtCx3u0pT0IVT2ti2zZmIsY2DbfvDF1K22LUI7HFpAHmxBwAexrt0InBkSXfoLCoN8YtgoZO9beDo5NOdXMoWrJIWngSbHLD+3FD2mSmLx3qM6hWLBechxNhxTrnNIYVyL1Y0vAwlaWW8g+IYe9a3PYGfkTed2QP5LXEzIgZ29upTPypXz27sl7xxa3T909bCgUjaLI51EEG4hL6ehh6Kto5+uezSR/L744b7Ge9FifAtaTg7E+f0Gst9iDM4ulurcq2k5kgc8Z5UIpIaigKvoiUz8T8rvM8bHI1sgQt7hj7LgDKYTbkkkL1ymRCIhW2HmbTuZfopNsjbu/98Tc+2xCUJ/NB6QodZw2mPSD8Hnz64Hb6nGAX5gZ9t/N1e/2ML28H9O61dYb/IXgfwAgz5JpBnfllPXdGejTRuuTQwGQy5AAfszx0GnsgWz/mHplTIlvE37Of6l0XuNfG/dKuuf07pnz7vmed2eHeXf2kt7d5DbmiqyBkA+lGeUGYMUiIi6oDKWSTOCbbfD2gA2ZFEwJJSAMlFRQxf2f+L+f91YEXLoImO1FwMdDSvCPj6K27v3Y4w9GbZGtHux+qMy3dn7YVhkB9IdMCBYEAaX4lwLkumGkggiZkIeBClUYvRz5TdIqzsy4iu9lv7M9p8X3Oy0u8jQudbVxXPy4jfs4z+255u6Su9tWTD1gX5l0ZvJrWHhR1YSsqBVbU1ew0Pa/QFbMHYCZOwEz123HQ/VepSsydgPHTmLMrfxYuEa6RmGCaGf9NXfrrt27zXRRZims7Gvt9ePt93z2xX77nyTf/Q9QSwcIDzUF/wEJAAAVIwAAUEsBAhQAFAAICAgAraR1UM6aRn/XBAAAGCYAABcAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAICAgAraR1ULNzFt1AAwAA9hAAABcAAAAAAAAAAAAAAAAAHAUAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAICAgAraR1UEKxA8KRAAAA2gAAABYAAAAAAAAAAAAAAAAAoQgAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICACtpHVQDzUF/wEJAAAVIwAADAAAAAAAAAAAAAAAAAB2CQAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAALESAAAAAA==

问题6

ABC\triangle ABC中,AC=3AC=\sqrt{3}B=π3\angle B=\dfrac{\pi}{3}BD=1BD=1CD=ADCD=AD,求ADAD

典型的定弦定角轨迹问题
DDOO重合时,AD=1AD=1
DDOO下方时,

UEsDBBQACAgIAIiDRFIAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmltz2jgUgJ+3v0Kjp92HgGVsLpk4nbQzO5uZJM1sMp19FbYw2gjJa8nB8OsrS2CbAik4tCHZ5CHykXXzd46OjiTOPuYTBh5JKqngAUQtBwLCQxFRHgcwU6OTPvx4/uEsJiImwxSDkUgnWAXQL0qW9bTU8ntekYeTJIAhw1LSEIKEYVVUCeAUApBLesrFDZ4QmeCQ3IVjMsFXIsTKtDJWKjltt6fTaWvZX0ukcVs3Kdu5jNpxrFo6hUAPmssALh5OdbsrtacdU891HNT+5/rK9nNCuVSYhwQC/UERGeGMKakfCSMTwhVQs4QEMBGUKwgYHhIWwNtCAr+PUkL+gGBRSXNy4PmH387kWEyBGP5LQp2n0oyU9YzQLsro158FEylIA9jrQRDbZBhA1/c1LpaMcQAdW5jhGUnBI2ZlDs6UCE19kzvCTJJlWd3TtYiIfeMtynM6MTiBVERrAkEgE0Ii82S/EBm1zIyGa+2FQqSRBHkAb/ANBLNFOrepKWLY3NH5oku/nqtmjNRGftZeYN0NcEQSwiNdaIUyakS52zeUi2Rok9cM2fvZkLvvkLdBRvtT/sLrbN1GbJHrG7gmfXcUNbqX/G8S6zHXGXfeGR+U8aoFe43oOoat80rJmiKWoSz+63hGTBJG8gOCZ5RXEK+MUEJ3m0UXdejOiyB3GiMvcFh4akzDB06kLMhW7RYPf9FIr15Ff6YO+Y+vKIlqHdGQqqfBjzIeKuNCFjA/Z+ljnX7Hc16Cf9XmofHvyRYIHZtTpbWEev2nWUoSF1LJ5W4pV6bcLIT7v5myyBQr+rrkSm+piDFQufYxD4Qk97ryF36fYi6LfdWq7WzXVIpnT2nJf9fSMWhp6ZtuvuK0ZJ/pkH2kRxvVFdYs6Nm6LLdc/6W1tofH3kjk+YHKUZnw/vZ5ALPqNvMDruNtxtjqHbFZPerPExWPrwuxigPeo7BdnOKGYBmnikiK+Y+2HmwW12b17VIuNdCzGmgyqr23g37H6M1HazaMHPuHvIGDUFfv6Y/WpAukKxuL2zKjgop+GdQjnQrb+YWCF4fWy42BlUpy3htzCI32XDQm3HpOCUDumF5mjik+dxYXCDky8gyZt3Nks019PdSU5uDC1riwBS9cm3Rs4tnEL5E02+gZZSbaF9UC3+9cvNdsd/KanMUbUfMvCL55NiFpbfrfLOXSXHzrAHR7GVlR5g7TfZtlbLcDyWikjWZCtVpOtL4mODd6w0MpWKbIXZgSwqvbM2u4UxqpcRGS6b5HNC8MxLYJxiKlc8FVSQMUdn/BzD3byvnDJoNxnzaYmnk+zwVjHrNq/l1YqdKAPVA3hb4/a9ukmDpDZ4Gw23L7HdT3O04P9QZ+v7sjUtSvkNoXOxNdcTALdeywZiBnZzN6voPZy00sjTcNq3PQjrPZUzktB/U8v+MOXB8NBp5+8A+/J/yzzKh2M8d4jGcMaK3oATd7TISZrE6WrVQy6b+xGAZnOWUUp7P1ng7IVJG8iiLujVD7KcBRIh1pvwSkXsBGpW/SM/W6WKM93woBHMDlWvuD2wqtnrj6oEsr1e7pLYIR1bQ5nugKdhCUf8LhQ5yKjEfr69tBgKGXtsHt0IZCMIIrF/VpKdfuh9ciim2Adl81fppJhWMSPgxFvrIIPu2LqKzmzZURave2G+bNc9bGkxc3hWax9ubrxI0hTp10u/YLpvby51Ln3wBQSwcIVfJfAv4EAADQJQAAUEsDBBQACAgIAIiDRFIAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMzZC54bWztmM1u2zgQgM/bpyB4r0TKkhwFUQqje9gF2iJFL70y0tjmrkSqJB1bebW+Q59pR6TiyG0SNEYaoO36oOHfDMlvRiPSZ692bUOuwFipVUl5xCgBVelaqlVJN2758oS+On9xtgK9gksjyFKbVriSZsPIvR7WomyeDm2i60paNcJaWVHSNcINKiXdUkJ2Vp4q/U60YDtRwYdqDa14oyvhvJW1c91pHG+32+hmvkibVYwmbbyzdbxauQglJbhoZUs6Fk7R7oH2dub1EsZ4/PHtmzDPS6msE6oCSnBDNSzFpnEWi9BAC8oR13eAS9dKVjOcoxGX0JT0b+Vwl1ANSyTVxlyh/qhc0hnPGD1/8ceZXest0Zf/4LiSOrOBvb6vxMMY7H6tG22IKWnCKUHAnKG8RFkkSK7p1qKkLOIs/HhaMM5zngT9RvRgyJVAoyy0iI3TlTfpW5eisXAzFid/q2sIPek4XsnWsybWAboJJ7cdQO1LYfvM+6z37p/akwo+uL4B4tay+leBRfzZRGko/CXrGoYoCjogV6CukIg2Fn3P/Cw988Ov2RhsO+7rPfe91zw0e31cqpE7sggaizBwkQQxCyINItsjgU8qrNMOz5J2wmC4oaFq6D+LR2d/43axk3bi9cVQ/fPA02x2lKeZdzTzbma3Tv5JXXo/XTKWAff85fPDsP1rVAnjwEqhJthfDx1fc89/d+73g0T7Cib8Lnz9gB8mwaP4FYUHmPDCI/Ryn6Gyp8JYaW1qS3YhCYTU4J/bvcmlGD5G4ywRfwAiOxKibvo11EarW46TpluUsxHlMW/OY/HzbOb5Z/zrCI7S8fOQFTlL8/TJfHFsSD+K7MJUa9lCDeIQLX7kngttwsPHN517tIP4Ndhe9JiBZX3I9flC1qcIXHwRuCa/TMxeGGnbQ6r8GanmIREHqkX+U1JV4Pb7fDeUp1k1+z+rPoblp42o/Ylr3Or7m/qUKT/yWnJ/aszTYvjNc56d8DThTwXoR1wt7rxYDI3h9tAHcZ3sDT72rkEWeRDzIE6CKO69h8i2a2Ql3cOutRuzxIvxXUfjsevQy+lxXka9Ow/H0fx7w/7W8LMcj/n3nuziyb0+vvkT4fw/UEsHCIpAEiFAAwAA5hAAAFBLAwQUAAgICACIg0RSAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanOtlM1u00AUhdfxUxhTI0cqcfiJGhVZyInqCqlSK1qxqlSNnRt76GRszUwgTRqpm4oFDwCIBWwRsECCDSq8TdzX4I7T0qYJzgbLC3vuN/ecY1/bdc1EqUyuu+5LekhrMaQxhILUUhG7wN2n0AUBPIL1TUg3deXAz7KDHSJIDxQIabhlHaQ7TFzKOzCoZUn2WFHFwLM31uzWmu037Y2G7Qe239IreNts6ZVW224Gd14QQQlX3jC5mxAujW6fR4qm3IzjcJs/4VQ5mTZRNUcGLqEpBqomIKYSbfmdzpa+4CAcS4LaVUcMrOojY2xcdbpcd0h1hDHyH+/ybx/yX2/PP7+enP3M33/P33yanH6ZnJ0womCQf3x1/vX3NTHc3yaZbuWQVWtlf58REcPI5uMVLTUDbpEQ2IXaqvngZnknpVzt0mFZ9XLzvfpcc8phL6HRIQcpNfIQCdp1rqAY1Hb4HCK1d5TpvLc8K9NNLUxeKSU9z+L9HggaWVWjgnRlRvoZlTSc+lKiD6h7AyiCX6O6hMkFWDtlqdD1+vTUxNioAMLmMn9R2sPSAG2GIP6Py8XUX5P3G405m3Oi/0w+xim82FH2DFCkGNhl8SXEPcBXaR4fm0YpyXBOLHM5pz+sMGWkmI7FFq3bQVAvDj3qJh74H5hBA8pQLy4mtshRAtRr06h/AFBLBwgnw0SPAAIAAI4EAABQSwMEFAAICAgAiINEUgAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWztXOty28YV/p08xQ6bZqRWpPa+QCIlI8nxNDNO7KmTjtM2nQHJFYkaBGgAlEgneYC+RZ+tT9JzdgHwKpGUZCt1o5hcYrG3c75z+XYJ5uTL6SghVzYv4iw9bbEObRGb9rJ+nA5OW5Pysh20vvzi45OBzQa2m0fkMstHUXnaUtiy6QdXHWUk1kXj8Wmrl0RFEfdaZJxEJXY5bV23SNw/bT0NjJL6K94+C5hsS/H0STs8u3jaZqE61/KrMDy/OGsRMi3iz9Ls22hki3HUsy97QzuKnmW9qHTzDcty/Nnx8fX1dadeWSfLB8cweXE8LfrHg0G3A2WLgHhpcdqqPnwG4y71vhauH6eUHb/65pmfpx2nRRmlPdsiKPok/uLjj06u47SfXZPruF8OQVEsDFpkaOPBEJShOQh+jK3GoJGx7ZXxlS2g78Klk74cjVuuWZTi/Y/8J5I0grVIP76K+zY/bdGONFwqSUPKFOWKyhbJ8timZdWW+TnXxqDLgygZiMDQUBsjWSjUyij1yo/rNZ1cxfbaLw4/uXUrxlukzLKkG+Gg5GfCiKLwIiwkR0QbqOGEKSKhJoAaQwTWKSaJINiECSIllBKrmYY7eBvelaKEMbhDOCWcE84IF3CpFFHQzGBfDm116Maj8MLWsCJ4CawTAl6uTkh4cfwEAyk/DKxDCe0+KWwN4yuOErhKERAZwkRYoQwjAtYA14YSGFHg8MzJISnBf4xIHJ4bwgMC44HoODIF7VzFRdxN7GnrMkoKsJw4vczBfJvropwl1qmvqpgDxo7gP2gRv4XmigIi3tjgDqVH+NLwkpTWgDe4sIV5y3yy37TiiNaT8oDvPqlcNgVAnoJCj7BgvuC+lvpLKnzBfSF9oXwb6XtK39Rrl0rfRop91OrlX9JqLZ7YR6fBgngMZQAbwMW7QhBcNnPLx0JWl9pfOuOmjFa1ga8N8VLf00TEnYRh+n4WwhsLMWo+q6JH7p97rdsHDc1DARcE67IanFetz8vvI2ozpeZyd/WKvRx/TdCNkN6uXL3kffezqXp6Gew8PePBe5/T0I0Bx5esKh8GiHB3IPYLTrcoQt0+5clxnY9PKiWQYohtKxMv7ahAtRhBNG8Ss8a8WWVnw4lRxOiFHH2EWVqreaLGNB0sJWoVLGdrjZXGpX5Ijphofdrmss7cR1Xu/nktd0OqlfNsCwvEoRghwA6IxiBZpV1YBW8SL1eYe7kmkJwVJxoD8Q05GHhmVsSNYoc2GTcqdzqM0/GkXNJbb9SvP5YZtI4SxyKr9v2s9/q80XQ1ko2KcnFYoExzeucp1BL7++gkibo2ASb9Eu2AkKsoQZ91M1xmaUnq2OrqTo4d0zyxk14S9+Mo/QvgXvOxbyejrs2J+5ihkG4Q7E5qSqq0njNSTOiuSS/L8v7LWQFmQqZ/tTl25qYDBCkEPqhoKEMFKpvVt3hHBkbSQOswBEPCrNOL0MQD0wlDrSFhm0AC4YU4MLvhlvFT26uXtixB/IJEU1s0qhvk6D8LF18X51kyrxpncVpeRONykrtdCKwhR6nO0kFinSodykDVe6+72fSl16H2Y303G2NA9SvoDi6yJMsJOCBXkL8GVdn1pWuDS2taUdeGuhYVUDhoc5+F3LVwZdeXrhWg7JdWicprMWk9S1wQf71sVM5EkPdP0rh8Vl+Uce/1XFLs4A2gqGx2eUz2UGOeHK8Y307GyLcao1E3GiNXosMEDaQMdRgEQsoFY6QduBHIMAjBZoVubFEHnYChhQYadpFKq7ktrtwy4W+2+KHYYhWia0scZX3rQ6rw7Zfun7y2eWoTb3UpID/JJoVv7lfmlj0p7IuoHJ6l/T/bAaSPFxHm7xIW4pvOBezbXjyCjr6+0nSEVvA9COZr+3aQ21ohfjEeh2qVpBjnNuoXQ2vLBg3vE/NmVS6ol39SRsAwHOsYxZDe2oDmKJo6VMGPxlUuOCl6eTxGAyddIBmv7dyE+3GBQ/QXBEeVFCBbD1MmgFEiEC0STcphlrtDiKjEGgwAU1hzgac8NZSlnZbT6RRwg3unrU/fTLLy86kv3OA2sSML2a105o/NW2t9XcAA2EnW/SckzFVzqTPuFW7HnJqg3Q2eQaJkPIwafSbRDGPTQqp1Y36zbC1ACYpn0Xf21SrOLi8XNo8va3qAce0bPBqTqqGJFbWbu9RkGidxlM9WhyvKKC9fYBAhZIrHMRRiHdW4DZY64BqD2gxQxRtKGSmU4JwKpgxsod7W4B5XKr0Nj3vAsY5GRZCrVu4CsZCNzaZ9R7ec6z6vOuFnjDjkP//6N6EfCmxOq2evXi0s6vnlZWFLxLPNQ4ef2g4TDuEHO5geXGTg3fnfxI+HR4QetipsXLLx1HIZtOrGwkhb/GcuySIAOnAIYNH1xZ4YbFObi2UFKkYCI5QcMjflmgYuRc0c6m8b8uqEwoTpR5GLtWvhcJsDzGazJQeY7e4A2PV2B1iIRv+3HnD+ww8bPSBwwMrtKEVRtGb/dTqA3dyPpE3WatmPh+QPhHY4P9zkFulkBPL2WotTOI4aJZPafDo05Apiqw4Nk8KwcE9UbrZ1IIUonqv+5O9JlA/sT79Pf/lkuypQl5Uq6BGZLUSDfUMBjrR7KpXrsmOaGfiiIqJ3tModYgJ1pgLmSIXglGlmNCRAw28JCuqWoLAHBL1sNIrSPknd4cyLLJk9A47cmp8MRPS09RPEVfJHcnDQ5h0FZgfWBNH5oI0lfIC77m29Cb7/Uql2UtbDgQWPE7+QavoNWCYzJOsNVr7PMocvh8CVUzAgf/DuOlL/4U9xv2/T+WnALgEsePT4VYASHPE8S5Ls2vbXSPn9XW43vMF5EEyAD2GeIwqQwi335sGuLWGhyTrekEb2xtv3+bDwnqcGTDvg8MLcxiXuag1LEXZJy90sS2yUNsqohVxNDQtz7M2k7qcY5kk/47e5SX2kQC7jqe0vLmQw6PrdHsnS78d+q/YSJDgDIQ/YUS3v4b3zFEQ7vpaz+RG5M23lO/FWZ7fidqXvnqkWyLryLFTfN5HJjtI0lFKF8M652cptxeY0xvbNYxupBN/EJTxKd6ATjwuR8BFDPBDTMCpU3DDORRAoHphHgaiis/weG/Q9QJFbUHlv2475N8f0HqclKlz4M8w0pyXLNzQeN+92XALpez2o1XreuBHh840I07tuRPj6ToTBVsSogNIw1IxytYGO34AUdPV/TIaUAXPm21zhwZkxX+G9vObGvCLH3L9vaOaKGwgyvwtD5u+WMjG2C2fi75Qkv0cOzCsSzJcoLq9oMPfvDRHmh6vNbqDC+yJbdfoN2bunmNUks8chWNV754Ng8fiKfLRzsEXaPqcuateDsOrMEf7uTAnq7r/BtcPB/Wa42kLccHK/02ZyLb3vsZvchTzvv6nkzAvE6iPOB91W8mZbyQ8//d00+nyH3WPNsoo3eXkgDskxgWTSZliubEy2bh13sfSH3y9WZ9u3btOdGm/ZiXQCrZHrUWECKUXQfN+nHmUzYt/U39tO/3HADyGtz1x5SlgNCQQJoLLrkPj6xYF2ybvvJphs1PpdaIONBza9gsVneQF7DuqeR5hRv52n1Q8ipsxvKZm7+5b5atd/FJV5PCVnvuOZb3HGAWEshet3Jn2hGqHsm9QvtIpq+NBYfOm1fi94L2qfA7JWud3hfRzv4nEcT/L7e177cV1vlX6jVpe5N3rQKnM+30aal05r7gRO/fDRXfNMWzKfZ24/pEnjUeSZRvWQCgEjt/4BIS8Mc78OmrnHqhZixRKCYcCk1Fxxw0NlqKoRZCEzwkiFpzoBZSp8lGD6fOHkbfU4dJtnPX8kz2I7HD1vy2nv7bxz2Yle2gHWr7jROSiBYaRa9aXL232pqEZr0tUjprNFviBowMHiJZMGf2QmvbI7jCnJ8WnIUComWCid+qE5l9oIzbTkzBgT1F55h1wIukvQHb9O8QE4/63M+iNzr60d44ONz9Pv8igt8Md9D3RGsRnfC4/v2Rq+g/3wHfw68K1PpgWnigbUKB0EpvoOfEPG+sDAPL8JzOF+YA5/HWBudlbWCaSBCq20YpLSsAIXrgFpLbSgxoTcfGjgYhpss0MPMV6wwzWci/1wLn4VOLcXn16j/7uwNfOuAFd4yIZraD3Zh44+eRxGs3CMs2v4bbOOYEJJpJWaKWCRPpuKjg5lKAXcpBxoZfAeyc2TuPrJ+caA+WR9p7AFm9WvpM6frH8h5X7hA4EqkJQzqnf2o3f3ddSGr+sqjg3r3+WLt3cv5M6yHC8+ZO9+3lX9nwq++C9QSwcICWzekYoMAAB1QQAAUEsBAhQAFAAICAgAiINEUlXyXwL+BAAA0CUAABcAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2RlZmF1bHRzMmQueG1sUEsBAhQAFAAICAgAiINEUopAEiFAAwAA5hAAABcAAAAAAAAAAAAAAAAAQwUAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1sUEsBAhQAFAAICAgAiINEUifDRI8AAgAAjgQAABYAAAAAAAAAAAAAAAAAyAgAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICACIg0RSCWzekYoMAAB1QQAADAAAAAAAAAAAAAAAAAAMCwAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQACAEAANAXAAAAAA==

问题7

向量a\boldsymbol ab\boldsymbol b的夹角为6060^\circ, 2b+a=1|2\boldsymbol b+\boldsymbol a|=1, 求b+2a|\boldsymbol b+2\boldsymbol a|的范围

图形自己动手, 但要注意变式题

已知c=1|\boldsymbol c|=1, 向量2c+d2\boldsymbol c+\boldsymbol d与向量c+2d\boldsymbol c+2\boldsymbol d的夹角为6060^\circ, 2b+a=1|2\boldsymbol b+\boldsymbol a|=1, 求d|\boldsymbol d|的范围

问题1 GeoGebra 绘图代码

O=(0,sqrt(3))
h:Ray(O,(-1,0))
i:Ray(O,(1,0))
A=point(segment(O,(-3.3,(-3.3+1)*sqrt(3))))
d:Circle(A,4*sqrt(3))
B=Intersect(d,i,1)
P=Intersect(x=0,PerpendicularBisector(A,B))
c:Circle(A,P,B)
Ray(O,P)

问题2 GeoGebra 部分代码

A=(-1,1)
B=(-1,-1)
C=(1,-1)
D=(1,1)
polyline({A,B,C,D,A})
c:x^2+y^2=2
d:x^2+y^2=2/3
O=(0,0)

问题3 GeoGebra 绘图代码

B=(-1.5*sqrt(2),0)
C=-B
A=(0,1.5*sqrt(2))
t = slider(0,1,0.02)
D=A+t*(C-A)
cir:circle(0.5*(A+D),D)
E=intersect(cir, line(B,D),2)
locus(E, t)
{segment(B,D),segment(C,E)}
polyLine({A,B,C,A})
ans = length(C-E)

问题5 GeoGebra 绘图代码

B=(0,0)
C=(sqrt(3),0)
A=(0,1)
D=Reflect(B,Line(A,C))
t=slider(0,1,0.01)
t=0.2
E = D + t*(C-D)
F = C + t*(B-C)
h=polyline(A,B,C,A,D,C)
f=segment(B,E)
g=segment(D,F)
P=intersect(f,g)
c:CircularArc(A,B,D)

问题6 GeoGebra 绘图代码

A= (sqrt(3)/2,-1/2)
eq1:x^(2)+y^(2)=1
C= (-sqrt(3)/2,-1/2)
B=Point(eq1)
O=(0,0)
f=Segment(B,C)
g=Segment(C,A)
h=Segment(B,A)
s=Segment((0,-1),(0,1))
D=Intersect(s,h)