三角形面积

1. 问题一

已知O(0,0)O(0,0), A(x1,y1)A(x_1,y_1), B(x2,y2)B(x_2,y_2), 求OAB\triangle OAB的面积SS.

2. 问题二

已知C(x0,y0)C(x_0,y_0), A(x1,y1)A(x_1,y_1), B(x2,y2)B(x_2,y_2), 求CAB\triangle CAB的面积SS.

O(0,0)O(0,0), A(x1x0,y1y0)A'(x_1-x_0,y_1-y_0), B(x2x0,y2y0)B'(x_2-x_0,y_2-y_0), 则CAB\triangle CABOAB\triangle OA'B'全等, 于是该问题转化为问题一.

3. 求解

3.1. 法一(小学)

3.2. 法二(初中)

3.3. 法三(高中,推荐)

因为AOB(0,π)\angle AOB\in (0,\pi), 根据诱导公式,

sinAOB=cos(AOB±π2)=cos(AOB)\sin\angle AOB=|\cos(\angle AOB \pm \frac{\pi}{2})|=|\cos(\angle AOB')|,

其中BB'BBOO旋转π2\dfrac{\pi}{2}所得, 坐标为±(y2,x2)\pm(-y_2,x_2),(这是因为OB=OBOB=OB'OBOB=0\overrightarrow{OB}\cdot \overrightarrow{OB'}=0). 因此,

S=12OAOBsinAOB=12OAOBcosAOB=12OAOB=12(x1,y1)(y2,x2)=12y1x2x1y2\begin{aligned} S&=\frac{1}{2}|OA|\cdot|OB|\sin\angle AOB\\ &=\frac{1}{2}\Big||OA|\cdot|OB'|\cos\angle AOB'\Big|\\ &=\frac{1}{2}|\overrightarrow{OA}\cdot\overrightarrow{OB'}| \\&=\frac{1}{2}|(x_1,y_1)\cdot(-y_2,x_2)| \\&=\frac{1}{2}|y_1x_2-x_1y_2| \end{aligned}

也可以根据下面公式推导:

(absinθ)2=a2b2(ab)2(|\mathbf{a}| \cdot|\mathbf{b}| \sin \theta )^2={|\mathbf{a}|^2|\mathbf{b}|^2-(\mathbf{a} \cdot \mathbf{b})^2}

4S2=[(x1)2+(y1)2][(x2)2+(y2)2][x1x2+y1y2]24S^2=[(x_1)^2+(y_1)^2][(x_2)^2+(y_2)^2] - [x_1x_2+y_1y_2]^2

化简整理

4S2=(y1x2)2+(x1y2)22x1x2y1y2=(y1x2x1y2)24S^2=(y_1x_2)^2+(x_1y_2)^2-2x_1x_2y_1y_2=(y_1x_2-x_1y_2)^2

因此

S=12y1x2x1y2S=\frac{1}{2}|y_1x_2-x_1y_2|

3.4. 法四(高中)

S=12ABhS=\dfrac{1}{2}|AB|h, hhABAB边上的高

lAB:y=k(xx1)+y1,k=y2y1x2x1(存在)l_{AB}:y=k(x-x_1)+y_1, \quad k=\dfrac{y_2-y_1}{x_2-x_1}(存在)

S=12ABh=121+k2x1x2y1kx11+k2=12x1x2y1kx1=12x1x2y1y2y1x2x1x1=12y1x2x1y2\begin{aligned} S&=\dfrac{1}{2}|AB|h\\ &=\dfrac{1}{2}\sqrt{1+k^2}|x_1-x_2|\dfrac{|y_1-kx_1|}{\sqrt{1+k^2}}\\ &=\dfrac{1}{2}|x_1-x_2||y_1-kx_1|\\ &=\dfrac{1}{2}|x_1-x_2|\Big|y_1-\dfrac{y_2-y_1}{x_2-x_1}x_1\Big|\\ &=\dfrac{1}{2}|y_1x_2-x_1y_2| \end{aligned}

对于kk不存在的情形, 从略

3.5. 法五(高中, 推荐)

参考直线方程的几何意义

已知O(0,0)O(0,0), A(x1,y1)A(x_1,y_1), B(x2,y2)B(x_2,y_2), 求OAB\triangle OAB的面积SS.

 设 lOA:y1xx1y=0,d(B,lOA)=x2y1x1y2x12+y12\text { 设 } l_{OA}: y_1 x-x_1 y=0, \, d(B, l_{OA})=\dfrac{\left|x_2 y_1-x_1 y_2\right|}{\sqrt{x_1^2+y_1^2}}

二分之一底乘高有:

S=12x12+y12x1y2x2y1x12+y12=12y1x2x1y2S=\dfrac{1}{2} \sqrt{x_1^2+y_1^2} \dfrac{\left|x_1 y_2-x_2 y_1\right|}{\sqrt{x_1^2+y_1^2}} =\dfrac{1}{2}|y_1x_2-x_1y_2|

对于一般问题:

已知C(x0,y0)C(x_0,y_0), A(x1,y1)A(x_1,y_1), B(x2,y2)B(x_2,y_2), 求ABC\triangle ABC的面积SS.

lAC:(xx0)(y1y0)(yy0)(x1x0)=0l_{AC}: (x-x_0)(y_1-y_0)-(y-y_0)(x_1-x_0)=0

BBlACl_{AC}的距离为:

d=2SAC=(x2x0)(y1y0)(y2y0)(x1x0)(y1y0)2+(x1x0)2d=\dfrac{2S}{|AC|} = \dfrac{|(x_2-x_0)(y_1-y_0)-(y_2-y_0)(x_1-x_0)|}{\sqrt{(y_1-y_0)^2+(x_1-x_0)^2}}

因此

S=12(x2x0)(y1y0)(y2y0)(x1x0)S=\dfrac{1}{2}|(x_2-x_0)(y_1-y_0)-(y_2-y_0)(x_1-x_0)|

3.6. 法六(大学)

S=12OA×OB=12x1x2y1y2S=\dfrac{1}{2}|\overrightarrow{OA}\times \overrightarrow{OB}|=\dfrac{1}{2}\Bigg|\left|\begin{array}{c} x_1 & x_2\\ y_1 & y_2\\ \end{array}\right|\Bigg|


返回主页

点我返回主页, 查看更多精彩